版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.2.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为()A. B. C. D.4.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.55.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.6.下列选项中,说法正确的是()A.“”的否定是“”B.若向量满足,则与的夹角为钝角C.若,则D.“”是“”的必要条件7.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.8.已知满足,则的取值范围为()A. B. C. D.9.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.010.已知实数,满足,则的最大值等于()A.2 B. C.4 D.811.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.412.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB14.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.15.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.16.已知函数是定义在上的奇函数,且周期为,当时,,则的值为___________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.18.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.19.(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.20.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.21.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是-1;(2)若,,成等比数列,求直线的方程.22.(10分)已知数列满足,,数列满足.(Ⅰ)求证数列是等比数列;(Ⅱ)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.2.B【解析】
先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.3.B【解析】
首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”,记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”记事件“恰好不同时包含字母,,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.4.A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.5.D【解析】
通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.6.D【解析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.【详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.7.C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.8.C【解析】
设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.9.C【解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.10.D【解析】
画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.11.C【解析】
画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.12.B【解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,.故选:B.【点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.二、填空题:本题共4小题,每小题5分,共20分。13.-7【解析】
由题意得AB+【详解】由题意得ABBC+∴AB+【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,14.【解析】
利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【详解】解:由条件得到又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:.【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.15.【解析】
由题意可知:为上的单调函数,则为定值,由指数函数的性质可知为上的增函数,则在,单调递增,求导,则恒成立,则,根据函数的正弦函数的性质即可求得的取值范围.【详解】若方程无解,则或恒成立,所以为上的单调函数,都有,则为定值,设,则,易知为上的增函数,,,又与的单调性相同,在上单调递增,则当,,恒成立,当,时,,,,,,此时,故答案为:【点睛】本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题.16.【解析】
由题意可得:,周期为,可得,可求出,最后再求的值即可.【详解】解:函数是定义在上的奇函数,.由周期为,可知,,..故答案为:.【点睛】本题主要考查函数的基本性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2).【解析】
(1)设的公差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和.【详解】(1)设的公差为,的公比为,由,.得:,解得,∴,;(2)由,得,为奇数时,,为偶数时,,∴.【点睛】本题考查求等差数列和等比数列的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公式得出相应结论.数列求和问题,对不是等差数列或等比数列的数列求和,需掌握一些特殊方法:错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等等.18.(1)2,;(2)证明见解析.【解析】
(1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.【详解】(1)解:由题意得的方程为,所以,解得.又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.所以圆的方程为.(2)证明:易知直线的斜率存在且不为0,设,的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点N的坐标为,所以,,故.【点睛】本题主要考查抛物线的定义几何性质以及直线与抛物线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.19.(1)(2),.【解析】
(1)根据数列的通项与前n项和的关系式,即求解数列的通项公式;(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.【详解】(1)由题意,当时,由,解得;当时,可得,即,显然当时上式也适合,所以数列的通项公式为.(2)由(1)可得,所以.因为对恒成立,所以,.【点睛】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力,属于中档试题.20.(1).(2)答案见解析【解析】
(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.21.(1)见解析;(2)【解析】
(1)设,,由已知,得,代入中即可;(2)利用抛物线的定义将转化为,再利用韦达定理计算.【详解】(1)在抛物线上,∴,设,,由题可知,,∴,∴,∴,∴,∴(2)由(1)问可设::,则,,,∴,∴,即(*),将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海商学院《国际商务谈判实践》2023-2024学年第一学期期末试卷
- 课题申报书:根植性视角下乡村社区生活圈健康管理设施精细配置及提升路径研究
- 课题申报书:高质量视域下融合教育巡回指导教师专业发展的机制与路径研究
- 课题申报书:高等职业院校双师型教师评价指标体系构建研究
- 课题申报书:高等教育普及化助推“人才红利”释放的策略研究
- 课题申报书:多模态数据治理:针对缺失、噪声与冗余问题的机器学习模型构建与应用研究
- 统编版语文三年级上册第七单元口语交际身边的“小事”核心素养公开课一等奖创新教学设计
- 上海南湖职业技术学院《护理管理学实验》2023-2024学年第一学期期末试卷
- 上海民远职业技术学院《明代白银货币史》2023-2024学年第一学期期末试卷
- 上海立达学院《校园景观设计》2023-2024学年第一学期期末试卷
- GB/T 15723-2024实验室玻璃仪器干燥器
- 《失血性休克查房》课件
- 2023-2024学年广东省广州市番禺区高二(上)期末地理试卷
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 专题04二元一次方程组的应用解答120题(12种解题模型)专项训练(解析版)
- 2024-2030年中国智慧港口行业深度调研及投资前景预测报告
- 2024年贵州省公务员考试《行测》真题及答案解析
- 贺州房地产市场月报2024年08月
- 健康减肥课件英语
- 考点 23 溶解度及溶解度曲线(解析版)
- 湘教版九年级上册数学期末考试试卷附答案
评论
0/150
提交评论