




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年重庆能源职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为(
)
A.
B.
C.
D.答案:B2.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;
(2)若,求实数a的取值范围答案:(1);(2)。解析:略3.已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
则满足条件的函数f(x)有()
A.6个
B.10个
C.12个
D.16个答案:C4.若一点P的极坐标是(r,θ),则它的直角坐标如何?答案:由题意可知x=rcosθ,y=rsinθ.所以点P的极坐标是(r,θ)的直角坐标为:(rcosθ,rsinθ).5.若(1+2)5=a+b2(a,b为有理数),则a+b=()A.45B.55C.70D.80答案:解析:由二项式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故选C6.已知四边形ABCD中,AB=12DC,且|AD|=|BC|,则四边形ABCD的形状是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即线段AB平行于线段CD,且线段AB长度是线段CD长度的一半∴四边形ABCD为以AB为上底、CD为下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的两腰相等,因此四边形ABCD是等腰梯形.故为:等腰梯形7.已知函数f(x)=x2+px+q与函数y=f(f(f(x)))有一个相同的零点,则f(0)与f(1)()
A.均为正值
B.均为负值
C.一正一负
D.至少有一个等于0答案:D8.如图,在△OAB中,P为线段AB上的一点,,且,则()
A.
B.
C.
D.
答案:A9.过点P(-3,0)且倾斜角为30°的直线和曲线x=t+1ty=t-1t(t为参数)相交于A,B两点.求线段AB的长.答案:直线的参数方程为
x
=
-3
+
32sy
=
12s
(s
为参数),曲线x=t+1ty=t-1t
可以化为
x2-y2=4.将直线的参数方程代入上式,得
s2-63s+
10
=
0.设A、B对应的参数分别为s1,s2,∴s1+
s2=
6
3,s1•s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.10.(本小题满分10分)选修4-1:几何证明选讲
如图,的角平分线的延长线交它的外接圆于点.
(Ⅰ)证明:;
(Ⅱ)若的面积,求的大小.答案:(Ⅰ)证明见解析(Ⅱ)90°解析:本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.11.选修4-4:坐标系与参数方程
已知极点O与原点重合,极轴与x轴的正半轴重合.点A,B的极坐标分别为(2,π),(22,π4),曲线C的参数方程为答案:(Ⅰ)S△AOB=12×2×212.如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
求证:CD是⊙O的切线.答案:证明:连接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切线.(10分)13.在⊙O中,弦AB=1.8cm,圆周角∠ACB=30°,则⊙O的直径等于()
A.3.2cm
B.3.4cm
C.3.6cm
D.4.0cm答案:C14.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.15.已知两个力F1,F2的夹角为90°,它们的合力大小为20N,合力与F1的夹角为30°,那么F1的大小为()A.103NB.10
NC.20
ND.102N答案:设向F1,F2的对应向量分别为OA、OB以OA、OB为邻边作平行四边形OACB如图,则OC=OA+OB,对应力F1,F2的合力∵F1,F2的夹角为90°,∴四边形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故选:A16.根据如图的框图,写出打印的第五个数是______.答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出N<35时,打印A值.程序在运行过程中各变量的情况如下表示:
是否继续循环
A
N循环前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以这个打印的第五个数是31.故为:3117.已知a、b、c是△ABC的三边,且关于x的二次方程x2-2x+lg(c2-b2)-2lga+1=0有等根,判断△ABC的形状.答案:解:∵方程有等根,∴Δ=4-4[lg(c2-b2)-2lga+1]=4-4lg=0,∴lg=1,∴=10,∴c2-b2=a2,即a2+b2=c2,∴△ABC为直角三角形.18.圆心在原点且圆周被直线3x+4y+15=0分成1:2两部分的圆的方程为
______.答案:如图,因为圆周被直线3x+4y+15=0分成1:2两部分,所以∠AOB=120°.而圆心到直线3x+4y+15=0的距离d=1532+42=3,在△AOB中,可求得OA=6.所以所求圆的方程为x2+y2=36.故为:x2+y2=3619.把下列命题写成“若p,则q”的形式,并指出条件与结论.
(1)相似三角形的对应角相等;
(2)当a>1时,函数y=ax是增函数.答案:(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=ax是增函数.条件p:a>1,结论q:函数y=ax是增函数.20.在(1+2x)5的展开式中,x2的系数等于______.(用数字作答)答案:由于(1+2x)5的展开式的通项公式为Tr+1=Cr5?(2x)r,令r=2求得x2的系数等于C25×22=40,故为40.21.已知直线l的参数方程为x=12ty=22+32t(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-π4)
(1)求直线l的倾斜角;
(2)若直线l与曲线C交于A,B两点,求|AB|.答案:(1)直线参数方程可以化x=tcos60°y=22+tsin60°,根据直线参数方程的意义,这条经过点(0,22),倾斜角为60°的直线.(2)l的直角坐标方程为y=3x+22,ρ=2cos(θ-π4)的直角坐标方程为(x-22)2+(y-22)2=1,所以圆心(22,22)到直线l的距离d=64,∴|AB|=102.22.在半径为1的圆内任取一点,以该点为中点作弦,则所做弦的长度超过3的概率是()A.15B.14C.13D.12答案:如图,C是弦AB的中点,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合条件的点必须在半径为12圆内,则所做弦的长度超过3的概率是P=S小圆S大圆=(12)2ππ=14.故选B.23.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()
A.
B.
C.
D.
答案:B24.圆心在x轴上,且过两点A(1,4),B(3,2)的圆的方程为______.答案:设圆心坐标为(m,0),半径为r,则圆的方程为(x-m)2+y2=r2,∵圆经过两点A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圆的方程为(x+1)2+y2=20故为:(x+1)2+y2=2025.已知圆锥的母线长与底面半径长之比为3:1,一个正方体有四个顶点在圆锥的底面内,另外的四个顶点在圆锥的侧面上(如图),则圆锥与正方体的表面积之比为(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D26.圆x2+y2-4x=0,在点P(1,)处的切线方程为()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D27.”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件答案:C28.已知实数x,y满足2x+y+5=0,那么x2+y2的最小值为()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,d=522+1=5.故选A.29.设非零向量、、满足||=||=||,+=,则<,>=()
A.150°
B.120°
C.60°
D.30°答案:B30.为了让学生更多地了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据下面的频率分布表,解答下列问题:
序号
(i)分组
(分数)本组中间值
(Gi)频数
(人数)频率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
计501(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参赛的800名学生中大概有多少同学获奖?
(3)请根据频率分布表估计该校高二年级参赛的800名同学的平均成绩.答案:(1)①为6,②为0.4,③为12,④为12⑤为0.24.(5分)(2)(12×0.24+0.24)×800=288,即在参加的800名学生中大概有288名同学获奖.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估计平均成绩为81分.(12分)31.设,求证:。答案:证明略解析:证明:因为,所以有。又,故有。…………10分于是有得证。
…………20分32.用反证法证明“3是无理数”时,第一步应假设“______.”答案:反证法肯定题设而否定结论,从而得出矛盾,题设“3是无理数”,那么假设为:3是有理数.故为3是有理数.33.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:
(1)与AO相等的向量有
______;
(2)写出与AO共线的向量有
______;
(3)写出与AO的模相等的向量有
______;
(4)向量AO与CO是否相等?答
______.答案:(1)与AO相等的向量有BF(2)与AO共线的向量有DE,CO,BF(3)与AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO与CO不相等34.执行下列程序后,输出的i的值是()
A.5
B.6
C.10
D.11答案:D35.设双曲线的焦点在x轴上,两条渐近线为y=±x,则双曲线的离心率e=()
A.5
B.
C.
D.答案:C36.在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数)和直线l:x=4t+6y=-3t-2(t为参数),则直线l与圆C相交所得的弦长等于______.答案:∵在平面直角坐标系xOy中,已知圆C:x=5cosθ-1y=5sinθ+2(θ为参数),∴(x+1)2+(y-2)2=25,∴圆心为(-1,2),半径为5,∵直线l:x=4t+6y=-3t-2(t为参数),∴3x+4y-10=0,∴圆心到直线l的距离d=|-3+8-10|5=1,∴直线l与圆C相交所得的弦长=2×52-1=46.故为46.37.一组数据12,15,24,25,31,31,36,36,37,39,44,49,50的中位数是()
A.31
B.36
C.35
D.34答案:B38.若随机变量X的概率分布如下表,则表中a的值为()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D39.天气预报说,在今后的三天中每一天下雨的概率均为40%,用随机模拟的方法进行试验,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用计算器中的随机函数产生0~9之间随机整数的20组如下:
907966191925271932812458569683
431257393027556488730113537989
通过以上随机模拟的数据可知三天中恰有两天下雨的概率近似为(
)。答案:0.2540.一个试验要求的温度在69℃~90℃之间,用分数法安排试验进行优选,则第一个试点安排在(
)。(取整数值)答案:82°41.已知命题p:“△ABC是等腰三角形”,命题q:“△ABC是直角三角形”,则命题“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不对答案:因为“△ABC是等腰直角三角形”即为“△ABC是等腰且直角三角形”,所以命题“△ABC是等腰直角三角形”的形式是p且q,故选B.42.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;
(1)求双曲线的标准方程;
(2)求弦AB所在直线方程;
(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.43.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如下图所示,则
A、以上四个图形都是正确的
B、只有(2)(4)是正确的
C、只有(4)是错误的
D、只有(1)(2)是正确的答案:C44.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤17845.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:2546.k取何值时,一元二次方程kx2+3kx+k=0的两根为负。答案:解:∴k≤或k>347.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.48.若定义运算a⊕b=b,a<ba,a≥b则函数f(x)=2x⊕(12)x的值域为______(用区间表示).答案:由题意画出f(x)=2x?(12)x的图象(实线部分),由图可知f(x)的值域为[1,+∞).故为:[1,+∞).49.如图:一个力F作用于小车G,使小车G发生了40米的位移,F的大小为50牛,且与小车的位移方向的夹角为60°,则F在小车位移方向上的正射影的数量为______,力F做的功为______牛米.答案:如图,∵|F|=50,且F与小车的位移方向的夹角为60°,∴F在小车位移方向上的正射影的数量为:|F|cos60°=50×12=25(牛).∵力F作用于小车G,使小车G发生了40米的位移,∴力F做的功w=25×40=1000(牛米).故为:25牛,1000.50.已知f(x)=,a≠b,
求证:|f(a)-f(b)|<|a-b|.答案:证明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化为|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要证|-|<|a-b|成立,只需证(-)2<(a-b)2.即证1+a2+1+b2-2<a2-2ab+b2,即证2+a2+b2-2<a2-2ab+b2.只需证2+2ab<2,即证1+ab<.当1+ab<0时,∵>0,∴不等式1+ab<成立.从而原不等式成立.当1+ab≥0时,要证1+ab<,只需证(1+ab)2<()2,即证1+2ab+a2b2<1+a2+b2+a2b2,即证2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.第2卷一.综合题(共50题)1.某射手射击所得环数X的分布列为:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
则此射手“射击一次命中环数大于7”的概率为()
A.0.28
B.0.88
C.0.79
D.0.51答案:C2.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)
即
(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.3.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0
(1)证明:1a是f(x)的一个根;(2)试比较1a与c的大小.答案:证明:(1)∵f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,f(x)=0的两个根x1,x2满足x1x2=ca,又f(c)=0,不妨设x1=c∴x2=1a,即1a是f(x)=0的一个根.(2)假设1a<c,又1a>0由0<x<c时,f(x)>0,得f(1a)>0,与f(1a)=0矛盾∴1a≥c又:f(x)=0的两个根不相等∴1a≠c,只有1a>c4.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:15.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.
答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.6.在平面直角坐标系xOy中,点P的坐标为(-1,1),若取原点O为极点,x轴正半轴为极轴,建立极坐标系,则在下列选项中,不是点P极坐标的是()
A.()
B.()
C.()
D.()答案:D7.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选A.8.化简的结果是()
A.a2
B.a
C.a
D.a答案:C9.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且2|AQ|2=1|AM|2+1|AN|2,求点Q的轨迹方程.答案:(I)∵椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴椭圆的离心率e=ca=12=22…4分(II)由(I)知,椭圆C的方程为x22+y2=1,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,-1)两点,此时点Q的坐标为(0,2-355)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①将y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化简得x2=1810k2-3…③因为点Q在直线y=kx+2上,所以k=y-2x,代入③中并化简得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由题意,Q(x,y)在椭圆C内,所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,则y∈(12,2-355)所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分10.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2011的坐标为______.答案:由题意,xn+1=xnyn+1=xn+yn∴向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列∴OP2011的坐标为(2,4020)故为:(2,4020)11.如图程序框图箭头a指向①处时,输出
s=______.箭头a指向②处时,输出
s=______.答案:程序在运行过程中各变量的情况如下表所示:(1)当箭头a指向①时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最终输出的S值为5,即m=5;(2)当箭头a指向②时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
1+2
3第三圈
是
1+2+3
4第四圈
是
1+2+3+4
5第五圈
是
1+2+3+4+5
6第六圈
否故最终输出的S值为1+2+3+4+5=15;则n=15.故为:5,15.12.直线l:y-1=k(x-1)和圆C:x2+y2-2y=0的关系是()
A.相离
B.相切或相交
C.相交
D.相切答案:C13.b=ac(a,b,c∈R)是a、b、c成等比数列的()A.必要非充分条件B.充分非必要条件C.充要条件D.既非充分又非必要条件答案:当b=a=0时,b=ac推不出a,x,b成等比数列成立,故不充分;当a,b,c成等比数列且a<0,b<0,c<0时,得不到b=ac故不必要.故选:D14.若a1-i=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故为:5.15.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45°,腰和上底均为1(如图),则平面图形的实际面积为______.答案:恢复后的原图形为一直角梯形,上底为1,高为2,下底为1+2,S=12(1+2+1)×2=2+2.故为:2+216.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm17.Rt△ABC的直角边AB在平面α内,顶点C在平面α外,则直角边BC、斜边AC在平面α上的射影与直角边AB组成的图形是()
A.线段或锐角三角形
B.线段与直角三角形
C.线段或钝角三角形
D.线段、锐角三角形、直角三角形或钝角三角形答案:B18.设方程lgx+x=3的实数根为x0,则x0所在的一个区间是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分别画出等式:lgx=3-x两边对应的函数图象:如图.由图知:它们的交点x0在区间(2,3)内,故选B.19.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,则以三条边长分别为|a|,|b|,|c|所构成的三角形的形状是______.答案:直线ax+by+c=0(abc≠0)与圆x2+y2=1相离,即|c|a2+b2>
1即|c|2>a2+b2三角形是钝角三角形.故为:钝角三角形.20.某几何体的三视图如图所示,则这个几何体的体积是______.答案:由三视图可知该几何体为是一平放的直三棱柱,底面是边长为2的正三角形,棱柱的侧棱为3,也为高.V=Sh=34×22
×3=33故为:33.21.设a∈(0,1)∪(1,+∞),对任意的x∈(0,12],总有4x≤logax恒成立,则实数a的取值范围是______.答案:∵a∈(0,1)∪(1,+∞),当0<x≤12时,函数y=4x的图象如下图所示:∵对任意的x∈(0,12],总有4x≤logax恒成立,若不等式4x<logax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=logax的图象与y=4x的图象交于(12,2)点时,a=22,故虚线所示的y=logax的图象对应的底数a应满足22<a<1.故为:(22,1).22.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“______”.答案:在由平面图形的性质向空间物体的性质进行类比时,我们常用由平面图形中线的性质类比推理出空间中面的性质,故由平面几何中的命题:“夹在两条平行线这间的平行线段相等”,我们可以推断在立体几何中:“夹在两个平行平面间的平行线段相等”这个命题是一个真命题.故为:“夹在两个平行平面间的平行线段相等”.23.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7224.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg).
施化肥量x15202530354045棉花产量y330345365405445450455(1)画出散点图;
(2)判断是否具有相关关系.答案:(1)根据已知表格中的数据可得施化肥量x和产量y的散点图如下所示:(2)根据(1)中散点图可知,各组数据对应点大致分布在一个条形区域内(一条直线附近)故施化肥量x和产量y具有线性相关关系.25.全称命题“任意x∈Z,2x+1是整数”的逆命题是()
A.若2x+1是整数,则x∈Z
B.若2x+1是奇数,则x∈Z
C.若2x+1是偶数,则x∈Z
D.若2x+1能被3整除,则x∈Z
E.若2x+1是整数,则x∈Z答案:A26.口袋中装有三个编号分别为1,2,3的小球,现从袋中随机取球,每次取一个球,确定编号后放回,连续取球两次.则“两次取球中有3号球”的概率为()A.59B.49C.25D.12答案:每次取球时,出现3号球的概率为13,则两次取得球都是3号求得概率为C22?(13)2=19,两次取得球只有一次取得3号求得概率为C12?13?23=49,故“两次取球中有3号球”的概率为19+49=59,故选A.27.已知点P(t,t),t∈R,点M是圆x2+(y-1)2=上的动点,点N是圆(x-2)2+y2=上的动点,则|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C28.
以下四组向量中,互相平行的有()组.
A.一
B.二
C.三
D.四答案:D29.已知f(x+1)=x2+2x+3,则f(2)的值为______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故为:6.30.如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则BEBC=______.答案:连接CD,∵AC是⊙O的直径,∴CD⊥AB.∵BC经过半径OC的端点C且BC⊥AC,∴BC是⊙O的切线,而DE是⊙O的切线,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故为12.31.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D32.在下面的图示中,结构图是()
A.
B.
C.
D.
答案:B33.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C34.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(
)
A.点在圆上
B.点在圆内
C.点在圆外
D.不能确定答案:C35.下列各个对应中,从A到B构成映射的是()A.
B.
C.
D.
答案:按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.而在选项A和选项B中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义.选项C中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义,只有选项D满足映射的定义,故选D.36.如图,在△ABC中,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.答案:点A为y=0与x-2y+1=0两直线的交点,∴点A的坐标为(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分线所在直线的方程是y=0,∴kAC=-1.∴直线AC的方程是y=-x-1.而BC与x-2y+1=0垂直,∴kBC=-2.∴直线BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴点A和点C的坐标分别为(-1,0)和(5,-6)37.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.
(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;
(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.38.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C39.______称为向量;常用
______表示,记为
______,又可用小写字线表示为
______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有带箭头的线段来表示,记为有向线段AB,②又可用小写字线表示为:a,b,c…,故为:既有大小,又有方向的量;有带箭头的线段,有向线段AB,a,b,c….40.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()
A.
B.
C.
D.答案:A41.两个正方体M1、M2,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2,体积比为a3:b3.我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()
A.两个球
B.两个长方体
C.两个圆柱
D.两个圆锥答案:A42.
如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A43.已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为______;
(2)圆C上任意一点A到直线l的距离小于2的概率为______.答案:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d=2532+42=5,(2)由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,根据上一问可知圆心到直线的距离是5,在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P=60°360°=16故为:5;1644.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.45.三段论:“①船准时启航就能准时到达目的港,②这艘船准时到达了目的港,③这艘船是准时启航的”中,“小前提”是______.(填序号)答案:三段论:“①船准时启航就能准时到达目的港;②这艘船准时到达了目的港,③这艘船是准时启航的,我们易得大前提是①,小前提是②,结论是③,故为:②.46.(不等式选讲)
已知a>0,b>0,c>0,abc=1,试证明:.答案:略解析::证明:由,所以同理:
,
相加得:左³……………(10分)47.已知边长为1的正方形ABCD,则|AB+BC+CD|=______.答案:利用向量加法的几何性质,得AB+BC=AC∴AB+BC+CD=AD因为正方形的边长等于1所以|AB+BC+CD|=|AD|
=1故为:148.(1+2x)10的展开式的第4项是______.答案:(1+2x)10的展开式的第4项为T4=C310
(2X)3=960x3,故为960x3.49.一个凸多面体的各个面都是四边形,它的顶点数是16,则它的面数为()
A.14
B.7
C.15
D.不能确定答案:A50.设点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),则OA•BC=______.答案:因为点O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以OA=(1,-2,3),BC=(2,0,-6),OA•BC=(1,-2,3)•(2,0,-6)=2-18=-16.故为:-16.第3卷一.综合题(共50题)1.曲线x=sin2ty=sint(t为参数)的普通方程为______.答案:因为曲线x=sin2ty=sint(t为参数)∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故为:x=y2,(-1≤y≤1).2.设向量不共面,则下列集合可作为空间的一个基底的是(
)
A.{}
B.{}
C.{}
D.{}
答案:C3.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B4.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.5.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:26.证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面⇔对空间任一点O,存在实数x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,则有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四点A、B、C、D共面.所以,空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.7.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).8.抛物线y2=4x的焦点坐标是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C9.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()
A.a,b,c中至少有两个偶数
B.a,b,c中至少有两个偶数或都是奇数
C.a,b,c都是奇数
D.a,b,c都是偶数答案:B10.已知A(3,0),B(0,3),O为坐标原点,点C在第一象限内,且∠AOC=60°,设OC=OA+λOB
(λ∈R),则λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=
3tan60°=33又∵|OB|=3∴λ=3故选D.11.一个水平放置的平面图形,其斜二测直观图是一个等腰三角形,腰AB=AC=1,如图,则平面图形的实际面积为()
A.1
B.2
C.
D.
答案:A12.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为()
A.2.44
B.3.376
C.2.376
D.2.4答案:C13.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,
(1)与BC相等的向量有
______;
(2)与OB长度相等的向量有
______;
(3)与DA共线的向量有
______.答案:如图:(1)与BC相等的向量有AD.(2)与OB长度相等的向量有OA、OC、OD、AO、CO、DO.(3)与DA共线的向量有
CB、BC.14.已知抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为______.答案:抛物线y=14x2的标准方程为x2=4y的焦点F(0,1),对称轴为y轴所以抛物线y=14x2,则过其焦点垂直于其对称轴的直线方程为y=1故为y=1.15.不等式|x-500|≤5的解集是______.答案:因为不等式|x-500|≤5,由绝对值不等式的几何意义可知:{x|495≤x≤505}.故为:{x|495≤x≤505}.16.给出以下四个对象,其中能构成集合的有()
①教2011届高一的年轻教师;
②你所在班中身高超过1.70米的同学;
③2010年广州亚运会的比赛项目;
④1,3,5.A.1个B.2个C.3个D.4个答案:解析:因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.故选C.17.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。18.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ______(结果用最简分数表示).答案:用随机变量ξ表示选出的志愿者中女生的人数,ξ可取0,1,2,当ξ=0时,表示没有选到女生;当ξ=1时,表示选到一个女生;当ξ=2时,表示选到2个女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故为:4719.若90°<θ<180°,曲线x2+y2sinθ=1表示()
A.焦点在x轴上的双曲线
B.焦点在y轴上的双曲线
C.焦点在x轴上的椭圆
D.焦点在y轴上的椭圆答案:D20.集合M={(x,y)|xy≤0,x,y∈R}的意义是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.不在第一、三象限内的点的集合答案:∵xy≤0,∴xy<0或xy=0当xy<0时,则有x<0y>0或x>0y<0,点(x,y)在二、四象限,当xy=0时,则有x=0或y=0,点(x,y)在坐标轴上,故选D.21.有50件产品编号从1到50,现在从中抽取抽取5件检验,用系统抽样确定所抽取的编号为()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D22.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D23.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.24.如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE=()
A.
B.
C.
D.4
答案:B25.“x2>2012”是“x2>2011”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由于“x2>2
012”时,一定有“x2>2
011”,反之不成立.所以“x2>2
012”是“x2>2
011”的充分不必要条件.故选A.26.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是
______.答案:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故为:1.2.27.(x+1)4的展开式中x2的系数为()A.4B.6C.10D.20答案:(x+1)4的展开式的通项为Tr+1=C4rxr令r=2得T3=C42x2=6x∴展开式中x2的系数为6故选项为B28.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若
=λ+μ,则λ+μ=()
A.1
B.
C.
D.答案:D29.已知O是△ABC所在平面内一点,D为BC边中点,且,那么(
)
A.
B.
C.
D.2
答案:A30.
选修1:几何证明选讲
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.答案:证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,从而OP⊥l.因为P在⊙O上,所以l是⊙O的切线.(2)连接AP,因为l是⊙O的切线,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.31.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5232.为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
甲273830373531乙332938342836请判断:谁参加这项重大比赛更合适,并阐述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(
4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙
(10分)乙参加更合适
(12分)33.已知双曲线的两个焦点为F1(-,0),F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()
A.
B.
C.
D.答案:C34.已知焦点在x轴上的双曲线渐近线方程是y=±4x,则该双曲线的离心率是()
A.
B.
C.
D.答案:A35.点P(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业领导力培养计划
- 中国制造业的海外市场拓展策略
- 2025年球节展具行业深度研究报告
- 企业如何有效组织员工体检活动
- 从游客观影习惯出发的电影宣传策略设计
- 财务报表分析核心试题与答案
- 2025年四川建筑安全员《C证》考试题库
- 企业海外项目的风险管理
- 互动广告的创意与执行策略
- 互联网营销策略与实践分享
- 2024版义务教育小学科学课程标准
- 八年级学生学情分析-20211031092110
- 2024年继续教育公需课考试题目及答案
- 林下经济项目方案
- 2024江苏无锡市锡山区人力资源和社会保障局招聘2人历年高频500题难、易错点模拟试题附带答案详解
- 北京市某中学2024-2025学年高一地理下学期期中试题(含解析)
- 上门维修机合同协议书
- 泌尿系统核医学课件
- CJJT8-2011 城市测量规范
- 脑卒中后吞咽障碍患者进食护理课件
- 19《牧场之国》第二课时公开课一等奖创新教学设计
评论
0/150
提交评论