版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年焦作工贸职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.已知,,且与垂直,则实数λ的值为()
A.±
B.1
C.-
D.答案:D2.设P,Q为△ABC内的两点,且AP=mAB+nAC
(m,n>0)AQ=pAB+qAC
(p,q>0),则△ABP的面积与△ABQ的面积之比为______.答案:设P到边AB的距离为h1,Q到边AB的距离为h2,则△ABP的面积与△ABQ的面积之比为h1h2,设AB边上的单位法向量为e,AB?e=0,则h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故为n:q.3.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND4.过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()
A.30°
B.45°
C.60°
D.90°答案:C5.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:
①计算c=a2+b2;
②输入直角三角形两直角边长a,b的值;
③输出斜边长c的值;
其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③答案:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算c=a2+b2,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.6.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()
A.
B.
C.
D.以上均不对答案:A7.在极坐标系中,过点p(3,)且垂直于极轴的直线方程为()
A.Pcosθ=
B.Psinθ=
C.P=cosθ
D.P=sinθ答案:A8.一个盒子中装有4张卡片,上面分别写着四个函数:f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是______.答案:要使所得函数为奇函数,取出的两个函数必须是一个奇函数、一个偶函数.而所给的4个函数中,有2个奇函数、2个偶函数.所有的取法种数为C24=6,满足条件的取法有2×2=4种,故所得函数为奇函数的概率是46=23,故为23.9.若数列{an}(n∈N+)为等差数列,则数列bn=a1+a2+a3+…+ann(n∈N+)也为等差数列,类比上述性质,相应地,若数列{cn}是等比数列且cn>0(n∈N+),则有数列dn=______(n∈N+)也是等比数列.答案:从商类比开方,从和类比到积,可得如下结论:nC1C2C3Cn故为:nC1C2C3Cn10.点M的直角坐标为(-3,-1),则点M的极坐标为______.答案:∵M的直角坐标为(-3,-1),设M的极坐标为(ρ,θ),则ρ=(-3)2+(-1)2=2,又tanθ=33,∴θ=7π6,∴M的极坐标为(2,7π6).11.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.12.如图,已知△ABC,过顶点A的圆与边BC切于BC的中点P,与边AB、AC分别交于点M、N,且CN=2BM,点N平分AC.则AM:BM=()
A.2
B.4
C.6
D.7
答案:D13.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()
A.相切
B.相离
C.相交
D.相交或相切答案:C14.如图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一个点,若它停在奇数点上,则下次只能跳一个点;若停在偶数点上,则跳两个点.该青蛙从“5”这点起跳,经2
011次跳后它停在的点对应的数字是______.答案:起始点为5,按照规则,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循环出现,而2011=3×670+1.故经2011次跳后停在的点是1.故为115.对任意实数x,y,定义运算x*y为:x*y=ax+by+cxy,其中a,b,c为常数,等式右端运算为通常的实数加法和乘法,现已知1*2=3,2*3=4,并且有一个非零实数m,使得对于任意的实数都有x*m=x,则d的值为(
)
A.4
B.1
C.0
D.不确定答案:A16.某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为______.答案:设该班男生有x人,女生有y人,这次考试该年级学生平均分数为a.根据题意可知:75x+80y=(x+y)×a,且xx+y=40%.所以a=78,则这次考试该年级学生平均分数为78.故为:78.17.已知椭圆的焦点为F1,F2,A在椭圆上,B在F1A的延长线上,且|AB|=|AF2|,则B点的轨迹形状为()
A.椭圆
B.双曲线
C.圆
D.两条平行线答案:C18.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()
A.1
B.2
C.3
D.4答案:B19.下列关于结构图的说法不正确的是()
A.结构图中各要素之间通常表现为概念上的从属关系和逻辑上的先后关系
B.结构图都是“树形”结构
C.简洁的结构图能更好地反映主体要素之间关系和系统的整体特点
D.复杂的结构图能更详细地反映系统中各细节要素及其关系答案:B20.如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么()A.F=0,G≠0,E≠0B.E=0,F=0,G≠0C.G=0,F=0,E≠0D.G=0,E=0,F≠0答案:圆与x轴相切于原点,则圆心在y轴上,G=0,圆心的纵坐标的绝对值等于半径,F=0,E≠0.故选C.21.平面向量与的夹角为60°,=(1,0),||=1,则|+2|=(
)
A.7
B.
C.4
D.12答案:B22.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.23.证明不等式的最适合的方法是()
A.综合法
B.分析法
C.间接证法
D.合情推理法答案:B24.已知z=1+i,则|z|=______.答案:由z=1+i,所以|z|=12+12=2.故为2.25.下列各组集合,表示相等集合的是()
①M={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.26.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()
A.若K2的观测值为k=6.635,而p(K2≥6.635)=0.010,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误
D.以上三种说法都不正确答案:C27.设随机变量ξ服从正态分布N(μ,σ2),且函数f(x)=x2+4x+ξ没有零点的概率为,则μ为()
A.1
B.4
C.2
D.不能确定答案:B28.若a,b∈R,求证:≤+.答案:证明略解析:证明
当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.29.复数i2000=______.答案:复数i2009=i4×500=i0=1故为:130.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC于F,则的值等于()
A.
B.
C.
D.
答案:A31.已知向量a=(1,1)与b=(2,3),用坐标表示2a+b为______.答案:根据题意,a=(1,1)与b=(2,3),则2a+b=2(1,1)+(2,3)=(4,5);故为(4,5).32.已知离心率为63的椭圆C:x2a
2+y2b2=1(a>b>0)经过点P(3,1).
(1)求椭圆C的方程;
(2)过左焦点F1且不与x轴垂直的直线l交椭圆C于M、N两点,若OM•ON=463tan∠MON(O为坐标原点),求直线l的方程.答案:(1)依题意,离心率为63的椭圆C:x2a
2+y2b2=1(a>b>0)经过点P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故椭圆方程为x26+y22=1…(4分)(2)椭圆的左焦点为F1(-2,0),则直线l的方程可设为y=k(x+2)代入椭圆方程得:(3k2+1)x2+12k2x+12k2-6=0设M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1•x2=12k2-63k2+1…(6分)由OM•ON=463tan∠MON得:|OM|•|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原点O到l的距离d=|2k|1+k2,则S△OMN=12|MN|d=6(1+k2)3k2+1•|2k|1+k2=236解得k=±33∴l的方程是y=±33(x+2)…(13分)(用其他方法解答参照给分)33.设双曲线的焦点在x轴上,两条渐近线为y=±12x,则双曲线的离心率e=______.答案:依题意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故为52.34.求证:梯形两条对角线的中点连线平行于上、下底,且等于两底差的一半(用解析法证之).答案:证明见过程解析:求证:梯形两条对角线的中点连线平行于上、下底,且等于两底差的一半(用解析法证之).35.若平面向量a与b的夹角为120°,a=(2,0),|b|=1,则|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故为:236.下列有关相关指数R2的说法正确的有()
A.R2的值越大,说明残差平方和越小
B.R2越接近1,表示回归效果越差
C.R2的值越小,说明残差平方和越小
D.如果某数据可能采取几种不同回归方程进行回归分析,一般选择R2小的模型作为这组数据的模型答案:A37.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.
求:
(1)d的变化范围;
(2)当d取最大值时两条直线的方程.答案:(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9.…(2分)②当两条直线的斜率存在时,设这两条直线方程为l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)综合①②可知,所求d的变化范围为(0,310].方法二:如图所示,显然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的变化范围为(0,310].(2)由图可知,当d取最大值时,两直线垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)38.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是
______.答案:∵“a,b都是奇数”的否命题是“a,b不都是奇数”,“a+b是偶数”的否命题是“a+b不是偶数”,∴命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故为:若a+b不是偶数,则a,b不都是奇数.39.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..40.(理)在极坐标系中,半径为1,且圆心在(1,0)的圆的方程为()
A.ρ=sinθ
B.ρ=cosθ
C.ρ=2sinθ
D.ρ=2cosθ答案:D41.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且
DF=CF=2,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.答案:设AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7242.不等式的解集是(
)
A.(-3,2)
B.(2,+∞)
C.(-∞,-3)∪(2,+∞)
D.(-∞,-3)∪(3,+∞)答案:C43.已知向量a与向量b,|a|=2,|b|=3,a、b的夹角为60°,当1≤m≤2,0≤n≤2时,|ma+nb|的最大值为______.答案:∵|a|=2,|b|=3,a、b的夹角为60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴当m=2且n=2时,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值为10.故为:10.44.用反证法证明“如果a<b,那么“”,假设的内容应是()
A.
B.
C.且
D.或
答案:D45.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()
A.
B.
C.
D.
答案:D46.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.47.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.48.下列哪组中的两个函数是同一函数()A.y=(x)2与y=xB.y=(3x)3与y=xC.y=x2与y=(x)2D.y=3x3与y=x2x答案:A、y=x与y=x2的定义域不同,故不是同一函数.B、y=(3x)3=x与y=x的对应关系相同,定义域为R,故是同一函数.C、fy=x2与y=(x)2的定义域不同,故不是同一函数.D、y=3x3与y=x2x
具的定义域不同,故不是同一函数.故选B.49.已知回归直线的斜率的估计值是1.23,样本中心点为(4,5),若解释变量的值为10,则预报变量的值约为()A.16.3B.17.3C.12.38D.2.03答案:设回归方程为y=1.23x+b,∵样本中心点为(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10时,y=12.38故选C.50.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形答案:D第2卷一.综合题(共50题)1.点P,设△ABC的面积是△PBC的面积的m倍,那么m=()
A.1
B.
C.4
D.2答案:B2.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.3.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同答案:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,故A、B不对同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.4.若有以下说法:
①相等向量的模相等;
②若a和b都是单位向量,则a=b;
③对于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,则a∥c.
其中正确的说法序号是()A.①③B.①④C.②③D.③④答案:根据定义,大小相等且方向相同的两个向量相等.因此相等向量的模相等,故①正确;因为单位向量的模等于1,而方向不确定.所以若a和b都是单位向量,则不一定有a=b成立,故②不正确;根据向量加法的三角形法则,可得对于任意的a和b,都有|a+b|≤|a|+|b|成立,当且仅当a和b方向相同时等号成立,故③正确;若b=0,则有a∥b且c∥b,但是a∥c不成立,故④不正确.综上所述,正确的命题是①③故选:A5.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.6.(坐标系与参数方程)
从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.
(1)求点P的轨迹方程;
(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为17.已知x,y之间的一组数据:x1.081.121.191.28y2.252.372.402.55y与x之间的线性性回归方y=bx+a必过定点______.答案:回归直线方程一定过样本的中心点(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,
.y=2.25+2.37+2.40+2.554=2.3925,∴样本中心点是(1.1675,2.3925),故为(1.1675,2.3925).8.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].9.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.答案:证明:连接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO过AC的中点M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切线.(7分)10.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.11.执行下列程序后,输出的i的值是()
A.5
B.6
C.10
D.11答案:D12.根据给出的程序语言,画出程序框图,并计算程序运行后的结果.
答案:程序框图:模拟程序运行:当j=1时,n=1,当j=2时,n=1,当j=3时,n=1,当j=4时,n=2,…当j=8时,n=2,…当j=11时,n=2,当j=12时,此时不满足循环条件,退出循环程序运行后的结果是:2.13.设ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则a1x1,a2x2,…,anxn的值中,现给出以下结论,其中你认为正确的是______.
①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.答案:由题意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,对于a1x1,a2x2,…,anxn的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…an2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…an2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,a1x1,a2x2,…,anxn的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故为③⑤14.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()
A.5-
B.5+
C
D.10答案:B15.(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.答案:由抛物线的定义知点P的轨迹是以F为焦点的抛物线,其开口方向向右,且p2=2,解得p=4,所以其方程为y2=8x.故为y2=8x16.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.17.袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字互不相同的概率;
(Ⅱ)用X表示取出的3个小球上所标的最大数字,求随机变量X的分布列和均值.答案:(I)由题意知本题是一个古典概型,试验发生包含的事件数C123,满足条件的事件是取出的3个小球上的数字互不相同,共有C43C31C31C31记“一次取出的3个小球上的数字互不相同”的事件记为A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由题意X所有可能的取值为:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴随机变量X的分布列为∴随机变量X的期望为EX=1×1220+2×19220+3×1655+4×3455=15544.18.在曲线(t为参数)上的点是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A19.如图,l1,l2,l3是同一平面内的三条平行直线,l1与l2间的距离是1,l3与l2间的距离是2,正△ABC的三顶点分别在l1,l2,l3上,则△ABC的边长是______.答案:如图,过A,C作AE,CF垂直于L2,点E,F是垂足,将Rt△BCF绕点B逆时针旋转60°至Rt△BAD处,延长DA交L2于点G.由作图可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故为:221320.在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()
A.
B.
C.
D.
答案:D21.如图,点O是平行六面体ABCD-A1B1C1D1的对角线BD1与A1C的交点,=,=,=,则=()
A.++
B.++
C.--+
D.+-
答案:C22.已知实数x,y满足3x+4y+10=0,那么x2+y2的最小值为______.答案:设P(x,y),则|OP|=x2+y2,即x2+y2的几何意义表示为直线3x+4y+10=0上的点P到原点的距离的最小值.则根据点到直线的距离公式得点P到直线3x+4y+10=0的距离d=|10|32+42=105=2.故为:2.23.设a=lg2+lg5,b=ex(x<0),则a与b的大小关系是?答案:a═lg2+lg5=lg10=1又b=ex,由指数函数的性质知,当x<0时,0<b<1∴a>b24.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是______.
C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=22,BE=1,BF=2,若CE与圆相切,则线段CE的长为______.答案:A:当x<-3时不等式|x-5|+|x+3|≥10可化为:-(x-5)-(x+3)≥10解得:x≤-4当-3≤x≤5时不等式|x-5|+|x+3|≥10可化为:-(x-5)+(x+3)=8≥10恒不成立当x>5时不等式|x-5|+|x+3|≥10可化为:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集为:(-∞,-4]∪[6,+∞).B:圆ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)为圆心,半径等于1的圆,故圆心的极坐标为(1,3π2).C:由题意,DF=CF=22,BE=1,BF=2,由DF•FC=AF•BF,得22•22=AF•2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割线定理得CE2=BE•EA=1×7=7.∴CE=7.故为:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.25.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P()等于()
A.
B.
C.
D.答案:C26.两弦相交,一弦被分为12cm和18cm两段,另一弦被分为3:8,求另一弦长______.答案:设另一弦长xcm;由于另一弦被分为3:8的两段,故两段的长分别为311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故为:33cm27.下面为一个求20个数的平均数的程序,在横线上应填充的语句为()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A28.已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=(
)。答案:229.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C30.若直线l经过点M(1,5),且倾斜角为2π3,则直线l的参数方程为______.答案:由于过点(a,b)倾斜角为α的直线的参数方程为x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点M(1,5),且倾斜角为2π3,故直线的参数方程是x=1+t•cos2π3y=5+t•sin2π3即x=1-12ty=5+32t(t为参数).故为:x=1-12ty=5+32t(t为参数).31.若曲线x24+k+y21-k=1表示双曲线,则k的取值范围是
______.答案:要使方程为双曲线方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故为(-∞,-4)∪(1,+∞)32.若向量a=(4,2,-4),b=(6,-3,2),则(2a-3b)•(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)•(a+2b)=-10×16+13×(-4)=-212故为-21233.设某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6.现有一个10岁的这种动物,它能活到15岁的概率是______.答案:设活过10岁后能活到15岁的概率是P,由题意知0.9×P=0.6,解得P=23即一个10岁的这种动物,它能活到15岁的概率是23故为:23.34.用三段论的形式写出下列演绎推理.
(1)若两角是对顶角,则该两角相等,所以若两角不相等,则该两角不是对顶角;
(2)矩形的对角线相等,正方形是矩形,所以,正方形的对角线相等.答案:(1)两个角是对顶角则两角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是对顶角.结论(2)每一个矩形的对角线相等,大前提正方形是矩形,小前提正方形的对角线相等.结论35.直线kx-y+1=3k,当k变动时,所有直线都通过定点[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A36.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()
A.-2
B.-
C.
D.3答案:B37.设集合A={1,2,4},B={2,6},则A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故选B.38.P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为M,则点M的轨迹是()
A.椭圆
B.圆
C.双曲线
D.双曲线的一支答案:B39.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为()A.mNMB.mMNC.MNmD.N答案:由题意知,总体中带有标记的鱼所占比例是NM,故样本中带有标记的个数估计为mNM,故选A.40.在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).
(1)若AB⊥a,且|AB|=5|OA|(O为坐标原点),求向量OB;
(2)若向量AC与向量a共线,当k>4,且tsinθ取最大值4时,求OA•OC.答案:(1)∵点A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB•a=(n-8,t)•(-1,2)=0,得n=2t+8.则AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,当t=8时,n=24;当t=-8时,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC与向量a共线,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故当sinθ=4k时,tsinθ取最大值32k,有32k=4,得k=8.这时,sinθ=12,k=8,tsinθ=4,得t=8,则OC=(4,8).∴OA•OC=(8,0)•(4,8)=32.41.直线(3+4)x+(4-6)y-14-2=0(∈R)恒过定点A,则点A的坐标为(
)。答案:(2,-1)42.△ABC中,∠A外角的平分线与此三角形外接圆相交于P,求证:BP=CP.
答案:证明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.43.方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A44.定义xn+1yn+1=1011xnyn为向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*.已知OP1=(2,0),则OP2010的坐标为______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此类推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐标为(2,4018)故为:(2,4018)45.点P(1,3,5)关于平面xoz对称的点是Q,则向量=()
A.(2,0,10)
B.(0,-6,0)
C.(0,6,0)
D.(-2,0,-10)答案:B46.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与直线l:x=的位置关系是()
A.相交
B.相切
C.相离
D.不能确定答案:C47.设b是a的相反向量,则下列说法错误的是()
A.a与b的长度必相等
B.a与b的模一定相等
C.a与b一定不相等
D.a是b的相反向量答案:C48.(选做题)已知x+2y=1,则x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上点的距离的平方∴x2+y2的最小值是(0,0)到x+2y=1的距离d的平方据点到直线的距离公式得d=11+4=15∴x2+y2的最小值是15故为1549.下列命题:
①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;
②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;
③两个随机变量相关性越强,则相关系数的绝对值越接近1;
其中正确命题的序号是
______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③50.在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=______.答案:将其化为直角坐标方程为x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,则|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故为:23.第3卷一.综合题(共50题)1.设i为虚数单位,若=b+i(a,b∈R),则a,b的值为()
A.a=0,b=1
B.a=1,b=0
C.a=1,b=1
D.a=,b=-1答案:B2.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是()A.2B.2.5C.5D.10答案:设母线长为l,则S侧=π(1+3)l=4πl.S上底+S下底=π?12+π?32=10π.据题意4πl=20π即l=5,故选C.3.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()
A.a、b至少有一个不为0
B.a、b至少有一个为0
C.a、b全不为0
D.a、b中只有一个为0答案:A4.下列函数f(x)与g(x)表示同一函数的是
()A.f(x)=x0与g(x)=1B.f(x)=2lgx与g(x)=lgx2C.f(x)=|x|与g(x)=(x)2D.f(x)=x与g(x)=3x3答案:A、∵f(x)=x0,其定义域为{x|x≠0},而g(x)的定义域为R,故A错误;B、∵f(x)=2lgx,的定义域为{x|x>0},而g(x)=lgx2的定义域为R,故B错误;C、∵f(x)=|x|与g(x)=(x)2=x,其中f(x)的定义域为R,g(x)的定义域为{x|x≥0},故C错误;D、∵f(x)=x与g(x)=3x3=x,其中f(x)与g(x)的定义域为R,故D正确.故选D.5.在半径为R的球内作一内接圆柱,这个圆柱的底面半径和高为何值时,它的侧面积最大?并求此最大值.答案:解
如图,设内接圆柱的高为h,圆柱的底面半径为r,则h2+4r2=4R2因为h2+4r2≥4rh,当且仅当h=2r时取等.所以4R2≥4rh,即rh≤R2所以,S侧=2πrh≤2πR2,当且仅当h=2r时取等.又因为h2+4r2=4R2,所以r=22R,h=2R时取等综上,当内接圆柱的底面半径为22R,高为2R时,它的侧面积最大,为2πR26.在调试某设备的线路设计中,要选一个电阻,调试者手中只有阻值分别为0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七种阻值不等的定值电阻,他用分数法进行优法进行优选试验时,依次将电阻值从小到大安排序号,则第1个试点的电阻的阻值是(
).答案:3.5kΩ7.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为______.答案:如下图所示,当蚂蚁位于图中红色线段上时,距离三角形的三个顶点的距离均超过1,由已知易得:红色线段的长度和为:6三角形的周长为:12故P=612=12故为:128.已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.答案:由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:89.在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.答案:因椭圆x23+y2=1的参数方程为x=3cos?y=sin?(?为参数)故可设动点P的坐标为(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,当?=π6时,S取最大值2.10.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°答案:将正方体的展开图,还原为正方体,AB,CD为相邻表面,且无公共顶点的两条面上的对角线∴AB与CD所成的角为60°故选D.11.已知函数f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),则实数a的取值范围是______.答案:函数f(x)=2x,x≥01,
x<0,x<0时是常函数,x≥0时是增函数,由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故为:-1<a<2-1.12.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(3,0),(0,2),则此椭圆的方程是______.答案:依题意,此椭圆方程为标准方程,且焦点在x轴上,设为x2a2+y2b2=1∵椭圆的两顶点分别是(3,0),(0,2),∴a=3,b=2∵∴此椭圆的标准方程为:x29+y22=1.故为:x29+y22=1.13.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它们的和是()A.1789B.1799C.1879D.1899答案:由题意知本题是一个求和问题,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故选B.14.在直角坐标系xOy中,i,j分别是与x轴,y轴平行的单位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,则实数m=______.答案:把AB、AC平移,使得点A与原点重合,则AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°时,AB•BC=0,∴(1,1)•(2-1,m-1)=0,得m=0;若∠A=90°时,AB•AC=0,∴(1,1)•(2,m)=0,得m=-2.若∠C=90°时,AC•BC=0,即2+m2-m=0,此方程无解,综上,m为-2或0满足三角形为直角三角形.故为-2或015.下列三句话按“三段论”模式排列顺序正确的是()
①y=sin
x(x∈R
)是三角函数;②三角函数是周期函数;
③y=sin
x(x∈R
)是周期函数.
A.①②③
B.②①③
C.②③①
D.③②①答案:B16.函数y=ax的反函数的图象过点(9,2),则a的值为______.答案:依题意,点(9,2)在函数y=ax的反函数的图象上,则点(2,9)在函数y=ax的图象上将x=2,y=9,代入y=ax中,得9=a2解得a=3故为:3.17.设α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根,当m为何值时,α2+β2有最小值?并求出这个最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根则△=16m2-16(m+2)≥0,即m≤-1,或m≥2则α+β=m,α×β=m+24,则α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴当m=-1时,α2+β2有最小值,最小值是12.18.用0.618法确定的试点,则经过(
)次试验后,存优范围缩小为原来的0.6184倍.答案:519.设和为不共线的向量,若2-3与k+6(k∈R)共线,则k的值为()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B20.直线y=2x与直线x+y=3的交点坐标是
______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).21.已知A(4,1,3)、B(2,-5,1),C为线段AB上一点,且则C的坐标为()
A.
B.
C.
D.答案:C22.设随机变量X服从B(6,),则P(X=3)的值是()
A.
B.
C.
D.答案:B23.已知f(x)=2x2+1,则函数f(cosx)的单调减区间为______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函数f(cosx)的单调减区间为[kπ,π2+kπ],k∈Z.故为:[kπ,π2+kπ],k∈Z.24.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体是(
)答案:B25.集合{x∈N*|
12
x
∈Z}中含有的元素个数为()
A.4
B.6
C.8
D.12答案:B26.对于5年可成材的树木,从栽种到5年成材的木材年生长率为18%,以后木材的年生长率为10%.树木成材后,既可以出售树木,重栽新树苗;也可以让其继续生长.问:哪一种方案可获得较大的木材量?(注:只需考虑10年的情形)(参考数据:lg2=0.3010,lg1.1=0.0414)答案:由题意,第一种得到的木材为(1+18%)5×2第二种得到的木材为(1+18%)5×(1+10%)5第一种除以第二种的结果为2(1+10%)5=21.61>1所以第一种方案可获得较大的木材量.27.以直线x+3=0为准线的抛物线的标准方程是______.答案:由题意,抛物线的焦点在x轴上,焦点坐标为(3,0),∴抛物线的标准方程是y2=12x故为:y2=12x28.如果消息M发生的概率为P(M),那么消息M所含的信息量为I(M)=log2[P(M)+],若小明在一个有4排8列座位的小型报告厅里听报告,则发布的以下4条消费中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C29.已知一物体在共点力F1=(lg2,lg2),F2=(lg5,lg2)的作用下产生位移S=(2lg5,1),则这两个共点力对物体做的总功W为()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共点力的作用下产生位移S=(2lg5,1)∴这两个共点力对物体做的总功W为(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故选B30.若f(x)=exx≤0lnxx>0,则f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故为:12.31.某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为ξ,求ξ的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.答案:(I)ξ的所有可能的取值为0,1,2,3,….….(2分)则P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列为ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)记“张强被选中”为事件A,“李莉也被选中”为事件B,则P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)32.在极坐标系中,若等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别为(2,π6),(2,7π6),则顶点C的极坐标为______.答案:如图所示:由于A,B的极坐标(2,π6),(2,7π6),故极点O为线段AB的中点.故等边三角形ABC的边长为4,AB边上的高(即点C到AB的距离)OC等于23.设点C的极坐标为(23,π6+π2),即(23,2π3),故为(23,2π3).33.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为______.答案:由题意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴椭圆的标准方程为x250
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44677-2024电动自行车能量消耗量和续行里程试验方法
- GB/T 44757-2024钛及钛合金阳极氧化膜
- 2024年度虚拟现实教育培训系统设计与实施合同3篇
- 课件的应用教学课件
- 2024年度新能源开发合同:某太阳能发电项目的投资及建设3篇
- 2024年度商标转让合同(标的:一个商标的所有权)3篇
- 2024年度影视制作与传媒发行合同
- 2024年度羽毛球器材研发与改进合同
- 物流信息技术与应用 课件 9.项目九 数据交换与共享技术 上
- 《常青树启动宣导》课件
- 儒林外史试题含答案
- 节能减排意识培训课件
- 施工升降机维修保养检查记录
- 论高等院校开展工业设计专业的必要性
- 数据中心调研计划
- 初中语文人教七年级上册穿井得一人说课稿
- 检验科 ISO 15189体系文件 质量手册+程序文件+管理制度+采样手册+临检室+免疫室+生化室+PCR室+微生物与血库作业指导书+记录模板
- 北京市水资源税讲解
- 生药采收加工贮藏和养护
- DB34∕1659-2022 住宅工程质量常见问题防治技术规程
- 牙体牙髓笔记整理 牙髓病、根尖周病
评论
0/150
提交评论