版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章绪论习题一、选择题1.记录工作和记录研究的全过程可分为以下环节:(D)A.调查、录入数据、分析资料、撰写论文B.实验、录入数据、分析资料、撰写论文C.调查或实验、整理资料、分析资料D.设计、收集资料、整理资料、分析资料E.收集资料、整理资料、分析资料2.在记录学中,习惯上把(B)的事件称为小概率事件。A.B.或C.D.E.3~8A.计数资料B.等级资料C.计量资料D.名义资料E.角度资料3.某偏僻农村144名妇女生育情况如下:0胎5人、1胎25人、2胎70人、3胎30人、4胎14人。该资料的类型是(A)。4.分别用两种不同成分的培养基(A与B)培养鼠疫杆菌,反复实验单元数均为5个,记录48小时各实验单元上生长的活菌数如下,A:48、84、90、123、171;B:90、116、124、225、84。该资料的类型是(C)。5.空腹血糖测量值,属于(C)资料。6.用某种新疗法治疗某病患者41人,治疗结果如下:治愈8人、显效23人、好转6人、恶化3人、死亡1人。该资料的类型是(B)。7.某血库提供6094例ABO血型分布资料如下:O型1823、A型1598、B型2032、AB型641。该资料的类型是(D)。8.100名18岁男生的身高数据属于(C)。二、问答题1.举例说明总体与样本的概念.答:记录学家用总体这个术语表达大同小异的对象全体,通常称为目的总体,而资料常来源于目的总体的一个较小总体,称为研究总体。实际中由于研究总体的个体众多,甚至无限多,因此科学的办法是从中抽取一部分具有代表性的个体,称为样本。例如,关于吸烟与肺癌的研究以英国成年男子为总体目的,1951年英国所有注册医生作为研究总体,按照实验设计随机抽取的一定量的个体则组成了研究的样本。2.举例说明同质与变异的概念答:同质与变异是两个相对的概念。对于总体来说,同质是指该总体的共同特性,即该总体区别于其他总体的特性;变异是指该总体内部的差异,即个体的特异性。例如,某地同性别同年龄的小学生具有同质性,其身高、体重等存在变异。3.简要阐述记录设计与记录分析的关系答:记录设计与记录分析是科学研究中两个不可分割的重要方面。一般的,记录设计在前,然而一定的记录设计必然考虑其记录分析方法,因而记录分析又寓于记录设计之中;记录分析是在记录设计的基础上,根据设计的不同特点,选择相应的记录分析方法对资料进行分析第二章记录描述习题一、选择题1.描述一组偏态分布资料的变异度,以(D)指标较好。A.全距B.标准差C.变异系数D.四分位数间距E.方差2.各观测值均加(或减)同一数后(B)。A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变D.两者均改变E.以上都不对3.偏态分布宜用(C)描述其分布的集中趋势。A.算术均数B.标准差C.中位数D.四分位数间距E.方差4.为了直观地比较化疗后相同时点上一组乳腺癌患者血清肌酐和血液尿素氮两项指标观测值的变异限度的大小,可选用的最佳指标是(E)。A.标准差B.标准误C.全距D.四分位数间距E.变异系数5.测量了某地152人接种某疫苗后的抗体滴度,宜用(C)反映其平均滴度。A.算术均数B.中位数C.几何均数D.众数E.调和均数6.测量了某地237人晨尿中氟含量(mg/L),结果如下:尿氟值:0.2~0.6~1.0~1.4~1.8~2.2~2.6~3.0~3.4~3.8~频数:7567302016196211宜用(B)描述该资料。A.算术均数与标准差B.中位数与四分位数间距C.几何均数与标准差D.算术均数与四分位数间距E.中位数与标准差7.用均数和标准差可以全面描述(C)资料的特性。A.正偏态资料B.负偏态分布C.正态分布D.对称分布E.对数正态分布8.比较身高和体重两组数据变异度大小宜采用(A)。A.变异系数B.方差C.极差D.标准差E.四分位数间距9.血清学滴度资料最常用来表达其平均水平的指标是(C)。A.算术平均数B.中位数C.几何均数D.变异系数E.标准差10.最小组段无下限或最大组段无上限的频数分布资料,可用(C)描述其集中趋势。A.均数B.标准差C.中位数D.四分位数间距E.几何均数11.现有某种沙门菌食物中毒患者164例的潜伏期资料,宜用(B)描述该资料。A.算术均数与标准差B.中位数与四分位数间距C.几何均数与标准差D.算术均数与四分位数间距E.中位数与标准差12.测量了某地68人接种某疫苗后的抗体滴度,宜用(C)反映其平均滴度。A.算术均数B.中位数C.几何均数D.众数E.调和均数二、分析题1.请按照国际上对登记表的统一规定,修改下面有缺陷的登记表(不必加表头)年龄性别21-3031-4041-5051-6061-70男女男女男女男女男例数101481482372134922答案:性别年龄组21~3031~4041~5051~6061~70男1088221322女14143749.2.某医生在一个有5万人口的社区进行肺癌调查,通过随机抽样共调查2023人,所有调查工作在10天内完毕,调查内容涉及流行病学资料和临床实验室检查资料。调查结果列于表1。该医生对表中的资料进行了记录分析,认为男性肺癌的发病率高于女性,而死亡情况则完全相反。表1某社区不同性别人群肺癌情况性别检查人数有病人数死亡人数死亡率(%)发病率(%)男10506350.00.57女9503266.70.32合计20239555.60.451)该医生所选择的记录指标对的吗?答:否2)该医生对指标的计算方法恰当吗?答:否3)应当如何做适当的记录分析?表1某社区不同性别人群肺癌情况性别检查人数患病人数死亡人数死亡比(‰)现患率(‰)男1050632.8575.714女950322.1053.158合计2023952.54.53.1998年国家第二次卫生服务调查资料显示,城市妇女分娩地点分布(%)为医院63.84,妇幼保健机构20.76,卫生院7.63,其他7.77;农村妇女相应的医院20.38,妇幼保健机构4.66,卫生院16.38,其他58.58。试说明用何种记录图表达上述资料最佳。答:例如,用柱状图表达:第三章抽样分布与参数估计习题一、选择题1.(E)分布的资料,均数等于中位数。A.对数B.正偏态C.负偏态D.偏态E.正态2.对数正态分布的原变量是一种(D)分布。A.正态B.近似正态C.负偏态D.正偏态E.对称3.估计正常成年女性红细胞计数的95%医学参考值范围时,应用(A.)。A.B.C. D.E.4.估计正常成年男性尿汞含量的95%医学参考值范围时,应用(E)。A.B.C. D.E.5.若某人群某疾病发生的阳性数服从二项分布,则从该人群随机抽出个人,阳性数不少于人的概率为(A)。A.B.C.D.E.6.分布的标准差和均数的关系是(C)。A.B.C.=D.=E.与无固定关系7.用计数器测得某放射性物质5分钟内发出的脉冲数为330个,据此可估计该放射性物质平均每分钟脉冲计数的95%可信区间为(E)。A.B.C.D.E.8.分布的方差和均数分别记为和,当满足条件(E)时,分布近似正态分布。A.接近0或1B.较小C.较小D.接近0.5E.9.二项分布的图形取决于(C)的大小。A.B.C.与D.E.10.(C)小,表达用该样本均数估计总体均数的可靠性大。A.B.C.D.E.四分位数间距11.在参数未知的正态总体中随机抽样,(E)的概率为5%。A.1.96B.1.96C.2.58D.E.12.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其总体均数的95%可信区间为(B)。A.B.C.D.E.13.一药厂为了解其生产的某药物(同一批次)的有效成分含量是否符合国家规定的标准,随机抽取了该药10片,得其样本均数与标准差;估计该批药剂有效成分平均含量的95%可信区间时,应用(A)。A.B.C.D.E.14.在某地按人口的1/20随机抽取1000人,对其检测汉坦病毒IgG抗体滴度,得肾综合征出血热阴性感染率为5.25%,估计该地人群肾综合征出血热阴性感染率的95%可信区间时,应用(E)。A.B.C.D.E.15.在某地采用单纯随机抽样方法抽取10万人,进行一年伤害死亡回顾调查,得伤害死亡数为60人;估计该地每10万人平均伤害死亡数的95%可信区间时,应用(D)。A.B.C.D.E.16.关于以0为中心的分布,错误的是(A)。A.相同时,越大,越大B.分布是单峰分布C.当时,D.分布以0为中心,左右对称E.分布是一簇曲线二、简朴题1、标准差与标准误的区别与联系答:标准差:S=,表达观测值的变异限度。可用于计算变异系数,拟定医学参考值范围,计算标准误。标准差是个体差异或自然变异,不能通过记录方法来控制。标准误:,是估计均数抽样误差的大小。可以用来估计总体均数的可信区间,进行假设检查。可以通过增大样本量来减少标准误2、二项分布的应用条件答:(1)各观测单位只能具有两种互相独立的一种结果(2)已知发生某结果的概率为,其对立结果的概率为(1-)(3)n次实验是在相同条件下独立进行的,每个观测单位的观测结果不会影响到其他观测单位的结果。3、正态分布、二项分布、poisson分布的区别和联系答:区别:二项分布、poisson分布是离散型随机变量的常见分布,用概率函数描述其分布情况,而正态分布是连续型随机变量的最常见分布,用密度函数和分布函数描述其分布情况。联系:(1)二项分布与poisson分布的联系,当n很大,很小时,为一常数时,二项分布近似服从poisson分布(2)二项分布与正态分布的联系,当n较大,不接近0也不接近1,特别是当和都大于5时,二项分布近似正态分布(3)poisson分布与正态分布的联系,当时,poisson分布近似正态分布。三、计算分析题1、如何用样本均数估计总体均数的可信区间答:用样本均数估计总体均数有3种计算方法:(1)未知且小,按t分布的原理计算可信区间,可信区间为()(2)未知且足够大时,t分布逼近分布,按正态分布原理,可信区间为(3)已知,按正态分布原理,可信区间为2、某市2023年测得120名11岁男孩的身高均数为146.8cm,标准差为7.6cm,同时测得120名11岁女孩的身高均数为148.1cm,标准差为7.1cm,试估计该地11岁男、女童身高的总体均数,并进行评价。答:本题男、女童样本量均为120名(大样本),可用正态近似公式估计男、女童身高的总体均数的95%置信区间。男童的95%CI为=(145.44,148.16)女童的95%CI为=(146.83,149.37)3、按人口的1/20在某镇随机抽取312人,做血清登革热血凝克制抗体反映检查,得阳性率为8.81%,求该镇人群中登革热血凝克制抗体反映阳性率的95%可信区间。答:本例中,=0.0160=1.60%np=312*0.0881=28>5,n(1-p)=284>5,因此可用正态近似法进行估计。登革热血凝克制抗体反映阳性率的95%可信区间为(0.0881±1.96*0.016)=(0.0568,0.119)第四章数值变量资料的假设检查习题一、选择题1.在样本均数与总体均数比较的检查中,无效假设是(B)。A.样本均数与总体均数不等B.样本均数与总体均数相等C.两总体均数不等D.两总体均数相等E.样本均数等于总体均数2.在进行成组设计的两小样本均数比较的检查之前时,要注意两个前提条件。一要考察各样本是否来自正态分布总体,二要:(B)A.核对数据B.作方差齐性检查C.求均数、标准差D.求两样本的合并方差E.作变量变换3.两样本均数比较时,分别取以下检查水准,以(E)所取第二类错误最小。A.B.C.D.E.4.正态性检查,按检查水准,认为总体服从正态分布。若该推断有错,其错误的概率为(D)。A.大于0.10B.小于0.10C.等于0.10D.等于,而未知E.等于,而未知5.关于假设检查,下面哪一项说法是对的的(C)。A.单侧检查优于双侧检查B.若,则接受犯错误的也许性很小C.采用配对检查还是两样本检查是由实验设计方案决定的D.检查水准只能取0.05E.用两样本检查时,规定两总体方差齐性6.假设一组正常人的胆固醇值和血磷值均近似服从正态分布。为从不同角度来分析该两项指标间的关系,可选用:(E)A.配对检查和标准差B.变异系数和相关回归分析C.成组检查和检查D.变异系数和检查E.配对检查和相关回归分析7.在两样本均数比较的检查中,得到,,按检查水准不拒绝无效假设。此时也许犯:(B)A.第Ⅰ类错误B.第Ⅱ类错误C.一般错误D.错误较严重E.严重错误二、简答题1.假设检查中检查水准以及P值的意义是什么?答:为判断拒绝或不拒绝无效假设的水准,也是允许犯Ⅰ型错误的概率。值是指从规定的总体中随机抽样时,获得等于及大于(负值时为等于及小于)现有样本记录量的概率。2.t检查的应用条件是什么?答t检查的应用条件:①当样本含量较小(时),规定样本来自正态分布总体;②用于成组设计的两样本均数比较时,规定两样本来自总体方差相等的总体3.比较Ⅰ型错误和Ⅱ型错误的区别和联系。答Ⅰ型错误拒绝了事实上成立的,Ⅱ型错误不拒绝事实上不成立的。通常,当样本含量不变时,越小,越大;反之,越大,越小4.如何恰本地应用单侧与双侧检查?答在一般情况下均采用双侧检查,只有在具有充足理由可以认为假如无效假设不成立,实际情况只能有一种方向的也许时才考虑采用单侧检查。三、计算题1.调查显示,我国农村地区三岁男童头围均数为48.2cm,某医生记录了某乡村20名三岁男童头围,资料如下:48.2947.0349.1048.1250.0449.8548.9747.9648.1948.2549.0648.5647.8548.3748.2148.7248.8849.1147.8648.61。试问该地区三岁男童头围是否大于一般三岁男童。解检查假设这里的水准上拒绝可以认为该地区三岁男童头围大于一般三岁男童2.分别从10例乳癌患者化疗前和化疗后1天的尿样中测得尿白蛋白(ALb,mg/L)的数据如下,试分析化疗是否对ALb的含量有影响病人编号12345678910化疗前ALb含量3.311.79.46.82.03.15.33.721.817.6化疗后ALb含量33.030.88.811.442.65.81.619.022.430.2解检查假设这里,查表得双侧,按检查水准拒绝,可以认为化疗对乳腺癌患者ALb的含量有影响。3.某医生进行一项新药临床实验,已知实验组15人,心率均数为76.90,标准差为8.40;对照组16人,心率均数为73.10,标准差为6.84.试问在给予新药治疗之前,实验组和对照组病人心率的总体均数是否相同?解方差齐性检查可认为该资料方差齐。两样本均数比较的假设检查查所以可以认为实验组和对照组病人心率的总体均数相同4.测得某市18岁男性20人的腰围均值为76.5cm,标准差为10.6cm;女性25人的均值为69.2cm,标准差为6.5cm。根据这份数据可否认为该市18岁居民腰围有性别差异?.解方差齐性检查:可认为该资料方差不齐。两样本均数比较的假设检查查所以根据这份数据可以认为该市18岁居民腰围有性别差异5欲比较甲、乙两地儿童血浆视黄醇平均水平,调查甲地3~12岁儿童150名,血浆视黄醇均数为1.21µmol/L,标准差为0.28µmol/L;乙地3~12岁儿童160名,血浆视黄醇均数为0.98µmol/L,标准差为0.34µmol/L.试问甲乙两地3~12岁儿童血浆视黄醇平均水平有无差别?解检查假设这里,0.82在这里检查水准尚不能拒绝,可以认为甲乙两地3~12岁儿童血浆视黄醇平均水平没有差别第五章方差分析习题一、选择题1.完全随机设计资料的方差分析中,必然有(C)。A.B.C.D.E.2.当组数等于2时,对于同一资料,方差分析结果与检查结果(D)。A.完全等价且B.方差分析结果更准确C.检查结果更准确D.完全等价且E.理论上不一致3.在随机区组设计的方差分析中,若,则记录推论是(A)。A.各解决组间的总体均数不全相等B.各解决组间的总体均数都不相等C.各解决组间的样本均数都不相等D.解决组的各样本均数间的差别均有显著性E.各解决组间的总体方差不全相等4.随机区组设计方差分析的实例中有(E)。A.不会小于B.不会小于C.值不会小于1D.值不会小于1E.值不会是负数5.完全随机设计方差分析中的组间均方是(C)的记录量。A.表达抽样误差大小B.表达某解决因素的效应作用大小C.表达某解决因素的效应和随机误差两者综合影响的结果。D.表达个数据的离散限度E.表达随机因素的效应大小6.完全随机设计资料,若满足正态性和方差齐性。要对两小样本均数的差别做比较,可选择(A)。A.完全随机设计的方差分析B.检查C.配对检查D.检查E.秩和检查7.配对设计资料,若满足正态性和方差齐性。要对两样本均数的差别做比较,可选择(A)。A.随机区组设计的方差分析B.检查C.成组检查D.检查E.秩和检查8.对个组进行多个样本的方差齐性检查(Bartlett法),得,按检查,可认为(B)。A.全不相等B.不全相等C.不全相等D.不全相等E.不全相等9.变量变换中的对数变换(或),合用于(C):A.使服从Poisson分布的计数资料正态化B.使方差不齐的资料达成方差齐的规定C.使服从对数正态分布的资料正态化D.使轻度偏态的资料正态化E.使率较小(<30%)的二分类资料达成正态的规定10.变量变换中的平方根变换(或),合用于(A):A.使服从Poisson分布的计数资料或轻度偏态的资料正态化B.使服从对数正态分布的资料正态化C.使方差不齐的资料达成方差齐的规定D.使曲线直线化E.使率较大(>70%)的二分类资料达成正态的规定二、简答题1、方差分析的基本思想及应用条件答:方差分析的基本思想就是根据实验设计的类型,将所有测量值总的离均差平方和及其自由度分解为两个或多个部分,除随机误差作用外,每个部分的变异可由某个因素的作用(或某几个因素的交互作用)加以解释,如组间变异可有解决因素的作用加以解释。通过比较不同变异来源的均方,借助F分布做出记录推断,从而推论各种研究因素对实验结果有无影响。方差分析的应用条件:(1)各样本是互相独立的随机样本,均服从正态分布;(2)互相比较的各样本的总体方差相等,即具有方差齐性。2、在完全随机设计资料的方差分析与随机区组设计资料的方差分析在实验设计和变异分解上有什么不同?答:完全随机设计:采用完全随机化的分组方法,将所有实验对象分派到g个解决组(水平组),各组分别接受不同的解决。在分析时,随机区组设计:随机分派的次数要反复多次,每次随机分派都对同一个区组内的受试对象进行,且各个解决组受试对象数量相同,区组内均衡。在分析时,3、为什么多个均数的比较不能直接做两两比较的t检查?答:多个均数的比较,假如直接做两两比较的t检查,每次比较允许犯第Ⅰ类错误的概率都是α,这样做多次t检查,就增长了犯第Ⅰ类错误的概率。因此多个均数的比较应当先做方差分析,若多个总体均数不全相等,再进一步进行多个样本均数间的多重比较4、SNK-q检查和Dunnett-t检查都可用于均数的多重比较,它们有何不同?答:SNK-q检查常用于探索性的研究,合用于每两个均数的比较Duunett-t检查多用于证实性的研究,合用于k-1个实验组与对照组均数的比较。三、计算题1、某课题研究四种衣料内棉花吸附十硼氢量。每种衣料各做五次测量,所得数据如表5-1。试检查各种衣料棉花吸附十硼氢量有没有差异。表5-1各种衣料间棉花吸附十硼氢量衣料1衣料2衣料3衣料42.332.483.064.002.002.343.065.132.932.683.004.612.732.342.662.802.332.223.063.60采用完全随机设计的方差分析,计算环节如下:Ho:各个总体均数相等H1:各个总体均数不相等或不全相等α=0.05表5-1各种衣料间棉花吸附十硼氢量衣料1衣料2衣料3衣料4合计2.332.483.064.002.002.343.065.132.932.683.004.612.732.342.662.802.332.223.063.60555520(N)2.46402.41202.96804.02802.9680()0.36710.17580.17410.90070.80990()=*=0.809902*(20-1)=12.4629,=20-1=19=5(2.4640-2.9680)2+5(2.4120-2.9680)2+5(2.9680-2.9680)2+5(4.0280-2.9680)2=8.4338,=4-1=3=12.4629-8.4338=4.0292,=20-4=16=2.8113=0.2518F==11.16方差分析表变异来源SSνMSFP总12.462919组间8.433832.811311.16<0.01组内4.0292160.2518按=3,=16查F界值表,得,,故P<0.01。按α=0.05水准,拒绝,接受,可以认为各种衣料中棉花吸附十硼氢量有差异。2、研究中国各地区农村3岁儿童的血浆视黄醇水平,提成三个地区:沿海、内陆、西部,数据如下表,问三个地区农村3岁儿童的血浆视黄醇水平有无差异。地区n沿海201.100.37内陆230.970.29西部190.960.30解:Ho:各个总体均数相等H1:各个总体均数不相等或不全相等α=0.0500=0.2462,=3-1=2=6.0713,=62-3=59=0.1231=0.1029F==1.20方差分析结果变异来源SSνMSFP总6.317561组间0.246220.12311.20>0.05组内6.0713590.1029按=2,=59查F界值表,得,,故P>0.05。按α=0.05水准尚不能拒绝Ho,故可以认为各组总体均数相等3、将同性别、体重相近的同一配伍组的5只大鼠,分别用5种方法染尘,共有6个配伍组30只大鼠,测得的各鼠全肺湿重,见下表。问5种解决间的全肺湿重有无差别?表5-2.大鼠经5种方法染尘后全肺湿重区组对照A组B组C组D组第1区1.43.31.91.82.0第2区1.53.61.92.32.3第3区1.54.32.12.32.4第4区1.84.12.42.52.6第5区1.54.21.81.82.6第6区1.53.31.72.42.1解:解决组间:Ho:各个解决组的总体均数相等H1:各个解决组的总体均数不相等或不全相等α=0.05区组间:Ho:各个区组的总体均数相等H1:各个区组的总体均数不相等或不全相等α=0.05表5-2.大鼠经5种方法染尘后全肺湿重区组对照A组B组C组D组第1区1.43.31.91.82.052.0800第2区1.53.61.92.32.352.3200第3区1.54.32.12.32.452.5200第4区1.84.12.42.52.652.6800第5区1.54.21.81.82.652.3800第6区1.53.31.72.42.152.20236666630(N)1.53333.80001.96672.18332.33332.3633()0.13660.45610.25030.30610.25030.82816()ﻩ=19.8897,=30-1=29=17.6613,=5-1=4=1.1697,=6-1=5=19.8897-17.6613-1.1697=1.0587,=(5-1)(6-1)=20方差分析结果变异来源SSνMSFP总19.889729解决组17.661344.415383.41<0.01区组1.169750.23394.42<0.01误差1.0587200.0529按=4,=20查F界值表,得,,故P<0.01。按α=0.05水准,拒绝,接受,可以认为5种解决间的全肺湿重不全相等。按=5,=20查F界值表,得,,故P<0.05。按α=0.05水准,拒绝,接受,可以认为6种区组间的全肺湿重不全相等。4、对第1题的资料进行均数间的多重比较。解:采用SNK检查进行两两比较。Ho:,即任两对比较组的总体均数相等H1:,即任两对比较组的总体均数不相等α=0.05将四个样本均数由小到大排列,并编组次:均数2.41202.46402.96804.0280组别衣料2衣料1衣料3衣料4组次12344个样本均数两两比较的q检查(Newman-Keuls法)对比组两均数之差组数Q值P值1与20.052020.2317>0.051与30.556032.4775>0.051与41.616047.2023<0.012与30.504022.2458>0.052与41.564036.9691<0.013与41.060024.7233<0.05按按α=0.05水准,1与4,2与4,3与4,拒绝,差异有记录学意义,其他两两比较不拒绝,差异无记录学意义。即衣料2与衣料4,衣料1与衣料4,衣料3与衣料4的棉花吸附十硼氢量有差异,还不能认为衣料1与衣料2,衣料2与衣料3,衣料1与衣料3的棉花吸附十硼氢量有差异。第六章分类资料的假设检查习题一、选择题1.分布的形状(D)。A.同正态分布B.同分布C.为对称分布D.与自由度有关E.与样本含量有关2.四格表的自由度(B)。A.不一定等于1B.一定等于1C.等于行数×列数D.等于样本含量-1E.等于格子数-13.5个样本率作比较,,则在=0.05的检查水准下,可认为(A)。A.各总体率不全相等B.各总体率均不等C.各样本率均不等D.各样本率不全相等E.至少有两个总体率相等4.测得某地6094人的两种血型系统,结果如下。欲研究两种血型系统之间是否有联系,应选择的记录分析方法是(B)。某地6094人的ABO与MN血型ABO血型MN血型MNMNO431490902A388410800B495587950AB13717932A.秩和检查B.检查C.Ridit检查D.相关分析E.Kappa检查5.假定两种方法检测结果的假阳性率和假阴性率均很低。现有50份血样用甲法检查阳性25份,用乙法检查阳性35份,两法同为阳性和阴性的分别为23份和13份。欲比较两种方法检测结果的差别有无记录学意义,应选用(D)。A.检查B.检查C.配对检查D.配对四格表资料的检查E.四格表资料的检查6.某医师欲比较两种疗法治疗2型糖尿病的有效率有无差别,每组各观测了30例,应选用(C)。A.两样本率比较的检查B.两样本均数比较的检查C.四格表资料的检查D.配对四格表资料的检查E.四格表资料检查的校正公式7.用大剂量Vit.E治疗产后缺乳,以安慰剂对照,观测结果如下:Vit.E组,有效12例,无效6例;安慰剂组有效3例,无效9例。分析该资料,应选用(D)。A.检查B.检查C.检查D.Fisher精确概率法E.四格表资料的检查校正公式8.欲比较胞磷胆碱与神经节苷酯治疗脑血管疾病的疗效,将78例脑血管疾病患者随机分为2组,结果如下。分析该资料,应选用(D)。两种药物治疗脑血管疾病有效率的比较组别有效无效合计胞磷胆碱组46652神经节苷酯组18826合计641478A.检查B.检查C.检查D.Fisher精确概率法E.四格表资料的检查校正公式9.当四格表的周边合计数不变,若某格的实际频数有变化,则其理论频数(C)。A.增大B.减小C.不变D.不拟定E.随该格实际频数的增减而增减10.对于总合计数为500的5个样本率的资料作检查,其自由度为(D)。A.499B.496C.1D.4E.911.3个样本率作比较,,则在=0.05的检查水准下,可认为(B)。A.各总体率均不等B.各总体率不全相等C.各样本率均不等D.各样本率不全相等E.至少有两个总体率相等12.某医院用三种方案治疗急性无黄疸性病毒肝炎254例,观测结果如下。欲比较三种方案的疗效有无差别,应选择的记录分析方法是(A)。三种方案治疗肝炎的疗效结果组别无效好转显效痊愈西药组4931515中药组459224中西医结合组15281120A.秩和检查B.检查C.检查D.检查E.Kappa检查13.某实验室分别用乳胶凝集法和免疫荧光法对58名可疑系统红斑狼疮患者血清中抗核抗体进行测定:乳胶法阳性13例,免疫法阳性23例,两法同为阳性和阴性的分别为11例和33例。欲比较两种方法检测结果的差别有无记录学意义,应选用(D)。A.检查B.检查C.配对检查D.配对四格表资料的检查E.四格表资料的检查14.某医师欲比较两种药物治疗高血压病的有效率有无差别,每组各观测了35例,应选用(C)。A.两样本率比较的检查B.两样本均数比较的检查C.四格表资料的检查D.配对四格表资料的检查E.四格表资料的检查校正公式15.某医师为研究乙肝免疫球蛋白防止胎儿宫内感染HBV的效果,将33例HBsAg阳性孕妇随机分为防止注射组(22例)和非防止组(11例),观测结果为:防止注射组感染率18.18%,非防止组感染率45.45%。分析该资料,应选用(D)。A.检查B.检查C.检查D.Fisher精确概率法E.四格表资料的检查校正公式16.用兰芩口服液治疗慢性咽炎患者34例,有效者31例;用银黄口服液治疗慢性咽炎患者26例,有效者18例。分析该资料,应选用(E)。A.检查B.检查C.检查D.Fisher精确概率法E.四格表资料的检查校正公式二、简答题1.列出检查的用途?答:推断两个总体率间或者构成比见有无差别;多个总体率间或构成比间有无差别;多个样本率比较的的分割;两个分类变量之间有无关联性以及频数分布拟合优度的检查2.检查的基本思想?答:值反映了实际频数与理论频数的吻合限度,若检查假设成立,实际频数与理论频数的差值会小,则值也会小;反之,若检查假设不成立,实际频数与理论频数的差值会大,则值也会大。3.四格表资料的检查的分析思绪?答:(1)当且所有的时,用检查的基本公式或四格表资料检查的专用公式;当时,改用四格表资料的Fisher确切概率法。基本公式:专用公式:(2)当,但有时,用四格表资料检查的校正公式或改用四格表资料的Fisher确切概率法校正公式:(3)当,或时,用四格表资料的Fisher确切概率法三、问答题1.R×C表的分析思绪1.答:R×C表可分为双向无序、单向有序、双向有序属性相同和双向有序属性不同四类双向无序R×C表R×C表中的两个分类变量皆为无序分类变量。对于该类资料若研究目的为多个样本率(或构成比)的比较,可用行×列表资料的检查;若研究目的为分析两个分类变量之间有无关联性以及关系的密切限度时,可用行×列表资料的检查以及Pearson列联系数进行分析。单向有序R×C表有两种形式:一种是R×C表的分组变量是有序的,但指标变量是无序的,其研究目的通常是多个构成比的比较,此种单向有序R×C表可用行×列表资料的检查;另一种情况是R×C表中的分组变量为无序的,而指标变量是有序的。其研究目的通常是多个等级资料的比较,此种单向有序R×C表资料宜用秩和检查或Ridit分析。双向有序属性相同R×C表R×C表中的两分类变量皆为有序且属性相同。事实上是2×2配对设计的扩展,即水平数的诊断实验配伍设计。其研究目的通常是分析两种检查方法的一致性,此时宜用一致性检查(或称Kappa检查)。双向有序属性不同R×C表R×C表中两分类变量皆为有序的,但属性不同。对于该类资料:①若研究目的为分析不同年龄组患者疗效间有无差别时,可把它视为单项有序R×C表资料,选用秩和检查;②若研究目的为分析两个有序分类变量间是否存在相关关系,宜用等级相关分析或Pearson积矩相关分析;若研究目的为分析两个有序分类变量间是否存在线性变化趋势,宜用有序分组资料的线性趋势检查。四、计算题1.据以往经验,新生儿染色体异常率一般为1%,某院观测了本地1000名新生儿,发现有5例染色体异常,问该地新生儿染色体异常率是否低于一般?答:(1)建立检查假设,拟定检查水准:单侧(2)计算记录量u值,做出推断结论本例,,根据题意(3)拟定P值,做出推断结论。,P>0.05,按的检查水准,不拒绝,尚不能认为该地新生儿染色体异常率低于一般2.现用某种新药治疗患者400例,治愈369例,同时用传统药物治疗同类患者500例,477例治愈。试问两种药物的治愈率是否相同?答:(1)建立检查假设,拟定检查水准:单侧(2)计算记录量,做出推断结论本例,,根据题意(3)拟定P值,做出推断结论。,P<0.05,按的检查水准,拒绝,接受,可以认为这两种药物的治愈率不同。3.某医院分别用单纯化疗和符合化疗的方法治疗两组病情相似的淋巴肿瘤患者,两组的缓解率如下表,问两疗法的总体缓解率是否不同?两种疗法的缓解率的比较组别效果合计缓解率(%)缓解未缓解单纯化疗15203542.86复合化疗1852378.26合计33255856.90答:(1)建立检查假设,拟定检查水准:两法总体缓解率相同两法总体缓解率不同双侧(2)计算记录量,做出推断结论本例n=58,最小理论频数,用四格表资料的检查专用公式(3)拟定P值,做出推断结论。,P<0.05,在的检查水准下,差异有记录学意义,可以认为两种治疗方案的总体缓解率不同。4.分别用对同一批口腔颌面部肿瘤患者定性检测唾液和血清中癌胚抗原的含量,得到结果如下表,问这两种方法的检测结果有无差别?两种方法的检测结果唾液血清合计+-+151025-21315合计172340答:(1)建立检查假设,拟定检查水准:两种方法的检测结果相同两种方法的检测结果不同双侧(2)计算记录量,做出推断结论本例b+c=12<40,用配对四格表资料的检查校正公式(3)拟定P值,做出推断结论。,P<0.05,在的检查水准下,差异有记录学意义,可以认为两种方法的检测结果不同。5.测得250例颅内肿瘤患者的血清IL-8与MMP-9水平,结果如下表,问两种检测指标间是否存在关联?血清IL-8与MMP-9水平MMP-9IL-8合计ⅠⅡⅢⅠ225027Ⅱ187020108Ⅲ05560115合计4013080250答:(1)建立检查假设,拟定检查水准:两种检测指标间无关联两种检测指标间有关联双侧(2)计算记录量,做出推断结论本例为双向无序R×C表,用式求得(3)拟定P值,做出推断结论。,P<0.05,在的检查水准下,差异有记录学意义,可以认为两种检测指标有关联,进一步计算Pearson列联系数,以分析其关联密切限度。列联系数,可以认为两者关系密切。第七章非参数检查习题选择题1.配对比较秩和检查的基本思想是:若检查假设成立,则对样本来说(A)。A.正秩和与负秩和的绝对值不会相差很大B.正秩和与负秩和的绝对值相等C.正秩和与负秩和的绝对值相差很大D.不能得出结论E.以上都不对2.设配对资料的变量值为和,则配对资料的秩和检查是(E)。A.把和的差数从小到大排序B.分别按和从小到大排序C.把和综合从小到大排序D.把和的和数从小到大排序E.把和的差数的绝对值从小到大排序3.下列哪项不是非参数记录的优点(D)。A.不受总体分布的限制B.合用于等级资料C.合用于未知分布型资料D.合用于正态分布资料E.合用于分布呈明显偏态的资料4.等级资料的比较宜采用(A)。A.秩和检查B.检查C.检查D.检查E.检查5.在进行成组设计两样本秩和检查时,以下检查假设哪种是对的的(D)。A.两样本均数相同B.两样本的中位数相同C.两样本相应的总体均数相同D.两样本相应的总体分布相同E.两样本相应的总体均数不同6.以下检查方法中,不属于非参数检查方法的是(E)。A.Friedman检查B.符号检查C.Kruskal-Wallis检查D.Wilcoxon检查E.检查7.成组设计两样本比较的秩和检查中,描述不对的的是(C)。A.将两组数据统一由小到大编秩B.遇有相同数据,若在同一组,按顺序编秩C.遇有相同数据,若不在同一组,按顺序编秩D.遇有相同数据,若不在同一组,取其平均值E.遇有相同数据,若在同一组,取平均致词二、简答题1.简要回答进行非参数记录检查的合用条件。答:(1)资料不符合参数记录法的应用条件(总体为正态分布、且方差相等)或总体分布类型未知;(2)等级资料;(3)分布呈明显偏态又无适当的变量转换方法使之满足参数记录条件;(4)在资料满足参数检查的规定期,应首选参数法,以免减少检查效能你学过哪些设计的秩和检查,各有什么用途?答:(1)配对设计的符号秩和检查(Wilcoxon配对法)是推断其差值是否来自中位数为零的总体的方法,可用于配对设计差值的比较和单同样本与总体中位数的比较;(2)成组设计两样本比较的秩和检查(Wilcoxon两样本比较法)用于完全随机设计的两个样本的比较,目的是推断两样本分别代表的总体分布是否吸纳共同。(3)成组设计多样本比较的秩和检查(Kruskal-Wallis检查),用于完全随机设计的多个样本的比较,目的是推断两样本分别代表的总体的分布有无差别。(4)随机区组设计资料的秩和检查(Friedman检查),用于配伍组设计资料的比较。3试写出非参数记录方法的重要优缺陷答:优点:(1)合用范围广,不受总体分布的限制;(2)对数据的规定不严;(3)方法简便,易于理解和掌握。缺陷:假如对符合参数检查的资料用了非参数检查,因不能充足运用资料提供的信息,会使检查效能低于非参数检查;若要使检查效能相同,往往需要更大的样本含量。三、计算题1.对8份血清分别用HITAH7600全自动生化分析仪(仪器一)和OLYMPUSAU640全自动生化分析仪(仪器二)测乳酸脱氢酶(LDH),结果见表7-1。问两种仪器所得结果有无差别?表7-18份血清用原法和新法测血清乳酸脱氢酶(U/L)的比较编号仪器一仪器二11001202121130322022541862005195190615014871651808170171解:(1)建立检查假设,拟定检查水准:用方法一和方法二测得乳酸脱氢酶含量的差值的总体中位数为零,即:(2)计算检查记录量值①求各对的差值见表7-4第(4)栏。②编秩见表7-4第(5)栏。③求秩和并拟定记录量。取。(3)拟定值,做出推断结论本例中,,查附表界值表,得双侧;按照检查水准,拒绝,接受。认为用方法一和方法二测得乳酸脱氢酶含量差别有记录学意义。表7-48份血清用原法和新法测血清乳酸脱氢酶(U/L)的比较编号原法新法差值秩次(1)(2)(3)(4)=(2)—(3)(5)1100120-20-82121130-9-53220225-5-3.54186200-14-6519519053.56150148227165180-15-78170171-1-140名被动吸烟者和38名非被动吸烟者的碳氧血红蛋白HbCO(%)含量见表7-2。问被动吸烟者的HbCO(%)含量是否高于非被动吸烟者的HbCO(%)含量?表7-2吸烟工人和不吸烟工人的HbCO(%)含量比较含量被动吸烟者非被动吸烟者合计很低123低82331中161127偏高10414高404解:(1)建立检查假设,拟定检查水准:被动吸烟者的HbCO(%)与非被动吸烟者的HbCO(%)含量总体分布相同:被动吸烟者的HbCO(%)与非被动吸烟者的HbCO(%)含量总体分布不同(2)计算检查记录量值①编秩②求秩和并检查记录量,,,,故检查记录量,因,需要用检查;又因等级资料的相同秩次过多,故:(3)拟定值,做出推断结论,按检查水准,拒绝,接受,认为被动吸烟者的HbCO(%)与非被动吸烟者的HbCO(%)含量总体分布不同表7-5吸烟工人和不吸烟工人的HbCO(%)含量比较含量人数秩次范围平均秩次秩和被动吸烟者非被动吸烟者合计被动吸烟者非被动吸烟者(1)(2)(3)(4)(5)(6)(7)=(2)×(6)(8)=(3)×(6)很低1231~3224低823314~3419152437中16112734~6147.5760522.5偏高1041462~7568.5685274高40476~7977.53100合计394079——19091237.5受试者4人,每人穿四种不同的防护服时的收缩压值如表,问四种防护服对收缩压的影响有无显著差别?四个受试者的收缩压值有无显著差别?表7-3四种防护服与收缩压值受试者编号防护服A防护服B防护服C防护服D1115135140135212212513512031101301361304120115120130解:关于四种防护服对收缩压的影响:(1)建立检查假设,拟定检查水准:穿四种防护服后收缩压总体分布相同:4个总体分布不同或不全相同(2)计算记录量值①编秩②求秩和并计算检查记录量,3)拟定值,做出推断结论解决组数,配伍组数查表,,,,按检查水准不拒绝,尚不能认为不同防护服对收缩压影响有差别。表7-5关于四种防护服对收缩压的影响受试者编号防护服A防护服B防护服C防护服D收缩压秩次收缩压秩次收缩压秩次收缩压秩次111511352.514041352.521222125313541201311011353136413024120211511263130469.5159.5关于四个受试者收缩压值的差别:(1)建立检查假设,拟定检查水准:四个受试者的收缩压值没有差别:四个受试者的收缩压值不同(2)计算记录量值①编秩②求秩和并计算检查记录量(3)拟定值,做出推断结论解决组数,配伍组数查表,,,,按检查水准不拒绝,尚不能认为四个受试者的收缩压值有差别。表7-6关于四个受试者收缩压值的差别受试者编号防护服A防护服B防护服C防护服D收缩压秩次收缩压秩次收缩压秩次收缩压秩次111521353.51404135413.5212241252135212019311011353.513631302.51041203115112611302.57.5第八章直线回归与相关习题一、选择题1.直线回归中,假如自变量乘以一个不为0或1的常数,则有(B)。A.截距改变B.回归系数改变C.两者都改变D.两者都不改变E.以上情况都有也许2.假如直线相关系数,则一定有(C)。A.B.C.D.E.以上都不对的3.相关系数与决定系数在含义上是有区别的,下面的几种表述,哪一种最对的?(D)。A.值的大小反映了两个变量之间是否有密切的关系B.值接近于零,表白两变量之间没有任何关系C.值接近于零,表白两变量之间有曲线关系D.值接近于零,表白直线回归的奉献很小E.值大小反映了两个变量之间呈直线关系的密切限度和方向4.不同地区水中平均碘含量与地方性甲状腺肿患病率的资料如下:地区编号1234……17碘含量(单位)10.02.02.53.5……24.5患病率(%)40.537.739.020.0……0.0研究者欲通过碘含量来预测地方性甲状腺肿的患病率,应选用(B)。A.相关分析B.回归分析C.等级相关分析D.检查E.检查5.直线回归中与的标准差相等时,以下叙述(B)对的。A.B.C.D.E.以上都不对的6.运用直线回归估计值所相应值的均数可信区间时,(E)可减社区间长度。A.增长样本含量B.令值接近其均数C.减小剩余标准差D.减小可信度E.以上都可以7.有两组适合于作直线相关分析的实验资料(按专业知识都应取双侧检查),第1组资料:,;第2组资料:,。在没有具体资料和各种记录用表的条件下,可作出的结论是(A)。A.缺少作出明确记录推断的依据B.因,故有显著性意义C.因,故有显著性意义D.、都有显著性意义E.、都没有显著性意义8.某监测站同时用极谱法和碘量法测定了水中溶解氧的含量,结果如下。若拟用极谱法替代碘量法测定水中溶解氧的含量,应选用(B)。水样号12345678910极谱法(微安值)5.35.22.13.03.32.83.46.86.36.5碘量法(mg/L)5.855.800.331.962.771.582.327.797.567.98A.相关分析B.回归分析C.等级相关分析D.检查E.检查9.对两个数值变量同时进行相关和回归分析,有记录学意义(),则(B)A.无记录学意义B.有记录学意义C.不能肯定有无记录学意义D.以上都不是10.某医师拟制作标准曲线,用光密度值来推测食品中亚硝酸盐的含量,应选用的记录方法是(B)A.检查B.回归分析C.相关分析D.检查11.在直线回归分析中,回归系数的绝对值越大(D)A.所绘制散点越靠近回归线B.所绘制散点越远离回归线C.回归线对轴越平坦D.回归线对轴越陡12.根据观测结果,已建立关于的回归方程,变化1个单位,变化几个单位?(C)A.1B.2C.3D.513.直线回归系数假设检查,其自由度为(A)B.C.D.E.二、简答题1.详述直线回归分析的用途和分析环节。答:用途:①定量描述两变量之间的依存关系:对回归系数进行假设检查时,若,可认为两变量间存在直线回归关系。②运用回归方程进行预测:把预报因子(即自变量)代入回归方程对预报量(即因变量)进行估计,即可得到个体值的允许区间。③运用回归方程进行记录控制:规定值的变化,通过控制的范围来实现记录控制的目的。分析环节:①一方面控制散点图:若提醒有直线趋势存在,可作直线回归分析;若提醒无明显线性趋势,则根据散点图分布类型,选择合适的曲线模型,经数据变换后,化为线性回归来解决。若出现一些特大特小的异常点,应及时复核检查。②求出直线回归方程,其中:,③对回归系数进行假设检查:方差分析,基本思想是将因变量的总变异分解为和,然后运用检查来判断回归方程是否成立。检查:基本思想是运用样本回归系数与总体均数回归系数进行比较来判断回归方程是否成立,实际应用中用的检查来代替的检查。④直线回归方程的图示⑤回归方程拟合效果评价:决定系数,如说明回归能解释,此方程较好校正决定系数⑥直线回归方程的区间估计:总体回归系数的区间估计;的区间估计;个体值的允许区间2.直线相关与直线回归的联系和区别。答:区别:(1)资料规定不同相关规定两个变量是双变量正态分布;回归规定应变量服从正态分布,而自变量是能精确测量和严格控制的变量。(2)记录意义不同相关反映两变量间的随着关系这种关系是互相的,对等的;不一定有因果关系;回归则反映两变量间的依存关系,有自变量与应变量之分,一般将“因”或较易测定、变异较小者定为自变量。这种依存关系也许是因果关系或从属关系。(3)分析目的不同相关分析的目的是把两变量间直线关系的密切限度及方向用一记录指标表达出来;回归分析的目的则是把自变量与应变量间的关系用函数公式定量表达出来联系:(1)变量间关系的方向一致对同一资料,其与的正负号一致。(2)假设检查等价对同同样本,,由于计算较复杂,实际中常以的假设检查代替对的检查。(3)与值可互相换算。(4)相关和回归可以互相解释3.简述直线回归分析的含义,写出直线回归分析的一般表达式,试述该方程中各个符号的名称及意义。答:直线回归是用直线回归方程表达两个数量变量间依存关系的记录分析方法,属双变量分析的范畴。假如某一个变量随着另一个变量的变化而变化,并且它们的变化在直角坐标系中呈直线趋势,就可以用一个直线方程来定量地描述它们之间的数量依存关系,这就是直线回归分析。一般表达式:,和分别为第个体的自变量和应变量取值。称为截矩,为回归直线或其延长线与轴交点的纵坐标。称为回归直线的斜率。为误差。4.写出直线回归分析的应用条件并进行简要的解释。答:线性回归模型的前提条件是线性、独立、正态与等方差。(1)线性是指任意给定的所相应的应变量的总体均数与自变量呈线性关系(2)独立是指任意两个观测单位之间互相独立。否则会使参数估计值不够准确和精确。(3)正态性是指对任意给定的值,均服从正态分布,该正态分布的均数就是回归直线上与值相相应的那个点的纵坐标。(4)等方差是指在自变量的取值范围内,不管取什么值,都有相同的方差5.什么是曲线拟合?它一般分为哪两类?答:曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线拟合一般分为两类:曲线直线化法和直接拟合曲线方程三、计算题1.某研究人员测定了12名健康妇女的年龄(岁)和收缩压(),测量数据见表1,ﻩ表8-112名健康妇女年龄和收缩压的测量数据(岁)594272366347554938426860()19.6016.6721.2815.7319.8617.0719.9319.3315.3318.6720.1920.59ﻩ,,,,求与之间的直线回归方程解,,故所求直线回归方程为.(2)用方差分析的方法检查与之间的直线关系是否存在?):,即认为健康妇女的年龄与收缩压之间不存在直线关系:,即认为健康妇女的年龄与收缩压之间存在直线关系,,,。由,查表得,按的水准拒绝,接受。故可认为健康妇女的年龄与收缩压之间存在直线关系(3)估计总体回归系数的95%可信区间。,,则总体回归系数的95%可信区间为2.用A、B两种放射线分别局部照射家兔的某个部位,观测照射不同时间放射性急性皮肤损伤限度(见表8-2)。问由此而得的两样本回归系数相差是否显著?表8-2家兔皮肤损伤限度(评分)时间(分)皮肤损伤限度AB31.02.362.55.093.67.61210.015.21515.318.01825.027.62132.340.2解:(1)分别求出与、之间的回归直线~:,()~:,()(2)::计算值:估计误差平方和:查值表,做结论以查表得,,故,不拒绝,尚不能认为两样本回归系数相差显著3.某学校为了调查学生学习各科目之间的能力迁移问题,特抽取了15名学生的历史与语文成绩见表,请计算其相关限度并进行假设检查。表8-315名学生历史与语文成绩学生编号123456789101112131415历史889583937678858490818073797295语文788583907580838585827580867590解:由以上数据计算得:,,,,,,则相关系数。::本题,,得,查界值表,得。按的水准,拒绝,接受,认为学生的历史和语文成绩存在直线相关关系。4.在高血压脑出血微创外科治疗预后因素的研究中,调查了13例的术前GCS值与预后,见表,试作等级相关分析。表8-4高血压脑出血微创外科治疗术前GIS值与预后评测编号12345678910111213术前GSC值7.011.04.06.011.014.05.05.013.012.014.06.013.0预后评测分值6.07.02.55.48.39.03.94.68.67.99.25.68.7解:将两个变量的观测值分别由小到大编秩求各观测单位的两变量的秩次之差、的平方及其总和,由,得。对该相关系数进行假设检查:::查表得,,故,按水准拒绝,接受,可以认为在高血压脑出血微创外科治疗中,术前GSC值与预后之间存在正相关关系表8-5高血压脑出血微创外科治疗术前GIS值与预后评测编号术前GSC值预后评测分值秩次秩次(1)(2)(3)(4)(5)(6)=(3)-(5)(7)17.066.0600211.07.57.070.50.2534.012.510046.04.55.440.50.25511.07.58.39-1.52.25614.012.59.0120.50.2575.02.53.920.50.2585.02.54.63-0.50.25913.010.58.6100.50.251012.097.98111114.012.59.213-0.50.25126.04.55.65-0.50.251313.010.58.711-0.50.25合计5.5第九章协方差分析习题问答题为什么引入协方差分析?2.协方差分析的应用条件3.协方差分析的环节第十章实验设计概述习题一、选择题A.不对的,因所作的比较不是按率计算的B.不对的,因未设对照组或对比组C.不对的,因未作记录学假设检查D.对的,由于比较的是症状消失率E.对的,由于有效率达成97.0%2第十一章常用实验设计方法习题一、选择题4.以下实验设计中,相同条件下所需样本含量最少的是()。5.欲分析某抗肿瘤药物对来自中国、美国和伊朗的肿瘤患者各分期的治疗效果,应当采用何种分析方法()。二、思考题一名医生欲研究某新药对高血压病的治疗效果较之常规药物是否有提高。可选用何种实验设计。若要考虑治疗阶段和受试对象的影响,应当采用那种设计,选取20名患者,试述设计过程及如何对其进行分组。某地发生农药中毒事件,23名中毒者被送往医院治疗,治疗前及治疗12天后均有测得的血药浓度。某研究生通过配对t检查,得出结论:该治疗有效。请评述该生的方法及结论。假如有错误,如何改善。第十二章动物实验设计概述习题问答题:1、动物实验设计中,选择实验动物的基本原则是什么?2、欲比较甲、乙、丙、丁四种饲料对小白鼠血糖的影响,实验对象为8窝小白鼠,每窝四只,应采用何种实验设计?并写出该设计方法方差分析表中的部分内容。第十三章临床实验设计概述习题一、选择题:1、在双盲实验中,始终处在盲态的是()A.医务人员B.患者C.医务人员和患者D.数据分析人员E.以上所有人员2、在研究药物的有效性时,研究者让对照组服入与研究药物外观、性状完全相同的淀粉片,其重要目的是()。A.比较两种片剂的有效性B.研究淀粉片的治疗作用C.避免患者心理因素的影响D.减少选择性偏倚E.评价实验药物的安全性二、问答题:临床实验设计的特点是什么?为拟定某种治疗消化性溃疡药物的起始用药剂量,将20例新诊断的高血压患者按就诊的先后顺序依次分入低、中、高三个剂量组,经一段时间治疗后,通过比较三组患者的治疗后消化性溃疡的面积减少率来判断该药物的剂量。请根据以上描述回答:在这项研究中,研究的三要素分别是什么?请从记录学角度对此研究进行评价,并对此研究设计提出改善意见。第十四章多元线性回归分析习题一、选择题1.可用来进行多元线性回归方程的配合适度检查是(B)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于抚养权的离婚协议
- 2.3《林黛玉进贾府》【中职专用】高一语文(高教版2023基础模块上册)
- 湖南省郴州市第六中学观山学校2023-2024学年七年级上学期第三次月考生物试题(原卷版)-A4
- 2023年地震数据采集系统项目筹资方案
- PEP人教版小学六年级上册Unit6 How do you feel B Lets try Lets talk
- 《知识与个人知识》课件
- 电工(初级工)测试题及参考答案
- 山东省济宁市微山县2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 养老院老人入住资料制度
- 养老院老人安全管理制度
- 景观生态学基础智慧树知到期末考试答案2024年
- 2024年湖南湘潭钢铁集团有限公司招聘笔试参考题库附带答案详解
- 2025届高三英语一轮复习读后续写微技能之无灵主语
- 9.刷牙洗脸(课件)-一年级劳动教育“小农庄”(校本课程)
- 大学生劳动就业法律问题解读智慧树知到期末考试答案2024年
- 创新创业健身房
- 2024年全球经济的新趋势
- 药店风险防范与法律解读
- 电力管道施工施工组织设计方案
- 学校纪检监察工作制度样本
- 2023-2024年人教版九年级上册化学期末实验题复习
评论
0/150
提交评论