dl-4正弦电路稳态分析_第1页
dl-4正弦电路稳态分析_第2页
dl-4正弦电路稳态分析_第3页
dl-4正弦电路稳态分析_第4页
dl-4正弦电路稳态分析_第5页
已阅读5页,还剩120页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4章

正弦电路的稳态分析

2.正弦量的相量表示3.电路定理的相量形式;

重点:1.正弦量的表示、相位差;下页返回5.正弦稳态电路的分析;6.正弦稳态电路的功率分析;4.阻抗和导纳;4.1正弦量的基本概念1.正弦量瞬时值表达式:i(t)=Imcos(wt+y)波形:tiO/T周期T(period)和频率f(frequency):频率f

:每秒重复变化的次数。周期T

:重复变化一次所需的时间。单位:Hz,赫(兹)单位:s,秒正弦量为周期函数

f(t)=f(

t+kT)下页上页返回正弦电流电路激励和响应均为正弦量的电路(正弦稳态电路)称为正弦电路或交流电路。(1)正弦稳态电路在电力系统和电子技术领域占有十分重要的地位。研究正弦电路的意义:1)正弦函数是周期函数,其加、减、求导、积分运算后仍是同频率的正弦函数优点:2)正弦信号容易产生、传送和使用。下页上页返回(2)正弦信号是一种基本信号,任何变化规律复杂的信号可以分解为按正弦规律变化的分量。对正弦电路的分析研究具有重要的理论价值和实际意义。下页上页返回幅值

(amplitude)

(振幅、最大值)Im(2)角频率(angularfrequency)ω2.正弦量的三要素tiO/T(3)初相位(initialphaseangle)yIm2t单位:rad/s

,弧度/秒反映正弦量变化幅度的大小。相位变化的速度,反映正弦量变化快慢。反映正弦量的计时起点,常用角度表示。i(t)=Imcos(wt+y)下页上页返回同一个正弦量,计时起点不同,初相位不同。ti0一般规定:||。=0=/2=-/2下页上页返回例已知正弦电流波形如图,=103rad/s,(1)写出i(t)表达式;(2)求最大值发生的时间t1ti010050t1解由于最大值发生在计时起点右侧下页上页返回3.同频率正弦量的相位差(phasedifference)。设u(t)=Umcos(wt+yu),i(t)=Imcos(wt+yi)则相位差:j=(wt+yu)-(wt+yi)=yu-yij>0,u超前ij

角,或i落后uj

角(u比i先到达最大值);

j<0,

i超前

uj

角,或u滞后

ij

角,i比

u先到达最大值。tu,iu

iyuyijO等于初相位之差规定:|

|(180°)。下页上页返回j=0,同相:j=(180o)

,反相:特殊相位关系:tu,iu

i0tu,iu

i0=p/2:u领先ip/2,不说u落后i3p/2;i落后up/2,不说

i领先

u3p/2。tu,iu

i0同样可比较两个电压或两个电流的相位差。下页上页返回例计算下列两正弦量的相位差。解不能比较相位差两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。下页上页返回4.周期性电流、电压的有效值周期性电流、电压的瞬时值随时间而变,为了衡量其平均效果工程上采用有效值来表示。

周期电流、电压有效值(effectivevalue)定义R直流IR交流i电流有效值定义为有效值也称均方根值(root-meen-square)物理意义下页上页返回同样,可定义电压有效值:正弦电流、电压的有效值设

i(t)=Imcos(t+)下页上页返回同理,可得正弦电压有效值与最大值的关系:若一交流电压有效值为U=220V,则其最大值为Um311V;U=380V,

Um537V。(1)工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等。但绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。(2)测量中,交流测量仪表指示的电压、电流读数一般为有效值。(3)区分电压、电流的瞬时值、最大值、有效值的符号。注下页上页返回4.2正弦量的相量表示1.问题的提出:电路方程是微分方程:两个正弦量的相加:如KCL、KVL方程运算。+_RuLCi下页上页返回i1I1I2I3wwwi1+i2i3i2123角频率:有效值:初相位:因同频的正弦量相加仍得到同频的正弦量,所以,只要确定初相位和有效值(或最大值)就行了。因此,tu,ii1

i20i3正弦量复数实际是变换的思想下页上页返回复数A的表示形式AbReIma0A=a+jbAbReIma0|A|2.复数及运算下页上页返回两种表示法的关系:A=a+jb

A=|A|ejq

=|A|q

直角坐标表示极坐标表示或复数运算则A1±A2=(a1±a2)+j(b1±b2)(1)加减运算——采用代数形式若A1=a1+jb1,A2=a2+jb2A1A2ReIm0AbReIma0|A|图解法下页上页返回(2)乘除运算——采用极坐标形式若A1=|A1|1,A2=|A2|2除法:模相除,角相减。例1.乘法:模相乘,角相加。则:解下页上页返回例2.(3)旋转因子:复数

ejq

=cosq

+jsinq=1∠qA•ejq

相当于A逆时针旋转一个角度q,而模不变。故把ejq

称为旋转因子。解AReIm0A•ejq下页上页返回故+j,–j,-1

都可以看成旋转因子。几种不同值时的旋转因子ReIm0下页上页返回造一个复函数对A(t)取实部:对于任意一个正弦时间函数都有唯一与其对应的复数函数A(t)包含了三要素:I、、w,复常数包含了I

,

。A(t)还可以写成复常数无物理意义是一个正弦量有物理意义3.正弦量的相量表示下页上页返回称为正弦量i(t)

对应的相量。相量的模表示正弦量的有效值相量的幅角表示正弦量的初相位同样可以建立正弦电压与相量的对应关系:已知例1试用相量表示i,u.解下页上页返回在复平面上用向量表示相量的图例2试写出电流的瞬时值表达式。解相量图q下页上页返回4.相量法的应用(1)同频率正弦量的加减故同频正弦量相加减运算变成对应相量的相加减运算。i1i2=i3可得其相量关系为:下页上页返回例也可借助相量图计算ReImReIm首尾相接下页上页返回

2.正弦量的微分,积分运算微分运算:积分运算:下页上页返回例Ri(t)u(t)L+-C用相量运算:相量法的优点:(1)把时域问题变为复数问题;(2)把微积分方程的运算变为复数方程运算;(3)可以把直流电路的分析方法直接用于交流电路;下页上页返回注①正弦量相量时域频域②相量法只适用于激励为同频正弦量的非时变线性电路。③相量法用来分析正弦稳态电路。N线性N线性w1w2非线性w不适用正弦波形图相量图下页上页返回4.3基尔霍夫定律和电路元件的相量形式1.电阻元件VCR的相量形式时域形式:相量形式:相量模型uR(t)i(t)R+-有效值关系相位关系R+-URu相量关系:UR=RIu=i下页上页返回瞬时功率:波形图及相量图:

itOuRpRu=iURI瞬时功率以2交变。始终大于零,表明电阻始终吸收功率同相位下页上页返回时域形式:i(t)uL(t)L+-相量形式:相量模型jL+-相量关系:有效值关系:

U=wLI相位关系:u=i+90°

2.电感元件VCR的相量形式下页上页返回感抗的物理意义:(1)表示限制电流的能力;(2)感抗和频率成正比;wXL相量表达式:XL=L=2fL,称为感抗,单位为(欧姆)BL=1/L=1/2fL,

感纳,单位为S

感抗和感纳:下页上页返回功率:t

iOuLpL2瞬时功率以2交变,有正有负,一周期内刚好互相抵消i波形图及相量图:电压超前电流900下页上页返回时域形式:相量形式:相量模型iC(t)u(t)C+-+-有效值关系:

IC=wCU相位关系:i=u+90°

相量关系:3.电容元件VCR的相量形式下页上页返回XC=1/wC,

称为容抗,单位为

(欧姆)BC=wC,

称为容纳,单位为S

频率和容抗成反比,0,|XC|

直流开路(隔直)w,|XC|0高频短路(旁路作用)w|XC|容抗与容纳:相量表达式:下页上页返回功率:t

iCOupC2瞬时功率以2交变,有正有负,一周期内刚好互相抵消u波形图及相量图:电流超前电压900下页上页返回4.基尔霍夫定律的相量形式同频率的正弦量加减可以用对应的相量形式来进行计算。因此,在正弦电流电路中,KCL和KVL可用相应的相量形式表示:上式表明:流入某一节点的所有正弦电流用相量表示时仍满足KCL;而任一回路所有支路正弦电压用相量表示时仍满足KVL。下页上页返回例1试判断下列表达式的正、误:L下页上页返回例2A1A2A0Z1Z2已知电流表读数:A1=8AA2=6AA0=?A0=I0max=?A0=I0min=?解A0=A1A2=?下页上页返回例3+_15Wu4H0.02Fi解相量模型j20W-j15W+_15W下页上页返回例4+_5WuS0.2Fi解相量模型+_5W-j5W下页上页返回例5j40WjXL30WCBA解下页上页返回例6图示电路I1=I2=5A,U=50V,总电压与总电流同相位,求I、R、XC、XL。-jXC+_R-jXLUC+-解也可以画相量图计算令等式两边实部等于实部,虚部等于虚部下页上页返回-jXC+_R-jXLUC+-下页上页返回例7图示电路为阻容移项装置,如要求电容电压滞后与电源电压/3,问R、C应如何选择。解1也可以画相量图计算-jXC+_R+-下页上页返回例5图示为RC选频网络,试求u1和u0同相位的条件及-jXC-R-++Ruou1-jXC上页返回4.4复阻抗和复导纳1.复阻抗正弦稳态情况下Z+-无源线性+-单位:阻抗模阻抗角欧姆定律的相量形式下页上页返回当无源网络内为单个元件时有:R+-Z可以是实数,也可以是虚数C+-L+-下页上页返回2.RLC串联电路由KVL:LCRuuLuCi+-+-+-+-uRjLR+-+-+-+-下页上页返回Z—复阻抗;R—电阻(阻抗的实部);X—电抗(阻抗的虚部);

|Z|—复阻抗的模;z

—阻抗角。转换关系:或R=|Z|coszX=|Z|sinz阻抗三角形|Z|RXjz下页上页返回分析R、L、C串联电路得出:(1)Z=R+j(wL-1/wC)=|Z|∠jz为复数,故称复阻抗(2)wL>1/wC

,X>0,j

z>0,电路为感性,电压领先电流;相量图:选电流为参考向量,三角形UR、UX、U

称为电压三角形,它和阻抗三角形相似。即zUXjL’R+-+-+-等效电路下页上页返回wL<1/wC,

X<0,jz

<0,电路为容性,电压落后电流;wL=1/wC

,X=0,j

z=0,电路为电阻性,电压与电流同相。zUXR+-+-+-等效电路R+-+-等效电路下页上页返回例

已知:R=15,L=0.3mH,C=0.2F,求i,uR,uL,uC.解其相量模型为:LCRuuLuCi+-+-+-+-uRjLR+-+-+-+-下页上页返回则UL=8.42>U=5,分电压大于总电压。-3.4°相量图注下页上页返回3.导纳正弦稳态情况下Y+-无源线性+-单位:S导纳模导纳角下页上页返回对同一二端网络:当无源网络内为单个元件时有:R+-C+-L+-Y可以是实数,也可以是虚数下页上页返回4.RLC并联电路由KCL:iLCRuiLiC+-iLjLR+-下页上页返回Y—

复导纳;G—电导(导纳的实部);B—电纳(导纳的虚部);

|Y|—复导纳的模;y—导纳角。转换关系:或G=|Y|cos

yB=|Y|siny导纳三角形|Y|GBy下页上页返回(1)Y=G+j(wC-1/wL)=|Y|∠jy

数,故称复导纳;(2)wC>1/wL

,B>0,y>0,电路为容性,电流超前电压相量图:选电压为参考向量,y分析R、L、C并联电路得出:三角形IR、IB、I

称为电流三角形,它和导纳三角形相似。即RLC并联电路同样会出现分电流大于总电流的现象IB下页上页返回wC<1/wL

,B<0,y<0,电路为感性,电流落后电压;y等效电路R+-下页上页返回wC=1/wL

,B=0,jy=0,电路为电阻性,电流与电压同相等效电路jL’R+-等效电路R+-下页上页返回5.复阻抗和复导纳的等效互换一般情况G1/RB1/X。若Z为感性,X>0,则B<0,即仍为感性。注GjBYZRjX下页上页返回同样,若由Y变为Z,则有:GjBYZRjX下页上页返回例RL串联电路如图,求在=106rad/s时的等效并联电路。解RL串联电路的阻抗为:0.06mH50L’R’下页上页返回阻抗(导纳)的串联和并联Z+-分压公式Z1+Z2Zn-1.阻抗的串联下页上页返回分流公式2.导纳的并联Y1+Y2Yn-Y+-两个阻抗Z1、Z2的并联等效阻抗为:下页上页返回例求图示电路的等效阻抗,=105rad/s

。解感抗和容抗为:1mH301000.1FR1R2下页上页返回例图示电路对外呈现感性还是容性?

。解1等效阻抗为:33-j6j45下页上页返回解2用相量图求解,取电流2为参考相量:33-j6j45+++---下页上页返回例图示为RC选频网络,试求u1和u0同相位的条件及-jXC-R-++Ruou1-jXC解设:Z1=R-jXC,Z2=R//jXC下页上页返回4.5正弦电路的分析方法电阻电路与正弦电流电路的分析比较:可见,二者依据的电路定律是相似的。只要作出正弦电流电路的相量模型,便可将电阻电路的分析方法推广应用于正弦稳态的相量分析中。下页上页返回结论1.引入相量法,把求正弦稳态电路微分方程的特解问题转化为求解复数代数方程问题。2.引入电路的相量模型,不必列写时域微分方程,而直接列写相量形式的代数方程。3.引入阻抗以后,可将所有网络定理和方法都应用于交流,直流(f=0)是一个特例。下页上页返回例1:R2+_Li1i2i3R1CuZ1Z2R2+_R1画出电路的相量模型求:各支路电流。已知:解下页上页返回Z1Z2R2+_R1下页上页返回列写电路的回路电流方程和节点电压方程例2.解+_LR1R2R3R4C+_R1R2R3R4回路法:下页上页返回节点法:+_R1R2R3R4下页上页返回方法一:电源变换解例3.Z2Z1ZZ3Z2Z1Z3Z+-下页上页返回方法二:戴维南等效变换ZeqZ+-Z2Z1Z3求开路电压:求等效电阻:下页上页返回例4求图示电路的戴维南等效电路。j300+_+_5050j300+_+_100+_解求短路电流:下页上页返回例5用叠加定理计算电流Z2Z1Z3+-解下页上页返回已知平衡电桥Z1=R1,Z2=R2,Z3=R3+jwL3。

求:Zx=Rx+jwLx。平衡条件:Z1Z3=

Z2Zx

得R1(R3+jwL3)=R2(Rx+jwLx)∴Rx=R1R3/R2,Lx=L3R1/R2例6解Z1Z2ZxZ3

|Z1|1

•|Z3|3

=|Z2|2

•|Zx|x

|Z1|

|Z3|

=|Z2|

|Zx|

1

+3

=2

+x

下页上页返回已知:Z=10+j50W,Z1=400+j1000W。例7解ZZ1+_下页上页返回

已知:U=115V,U1=55.4V,

U2=80V,R1=32W,f=50Hz

求:线圈的电阻R2和电感L2。方法-、画相量图分析。例8解R1R2L2+_+_+_q2q下页上页返回方法二、R1R2L2+_+_+_其余步骤同解法一。下页上页返回用相量图分析例9移相桥电路。当R2由0时,解当R2=0,q=180;当R2

,q=0。ººabR2R1R1+_+-+-+-abb下页上页返回例10图示电路,R1R2jXL+_+_jXC解用相量图分析下页上页返回例11求RL串联电路在正弦输入下的零状态响应。L+_+_R解应用三要素法:用相量法求正弦稳态解过渡过程与接入时刻有关下页上页返回ti0直接进入稳定状态下页上页返回出现瞬时电流大于稳态电流现象ti0下页上页返回4.6正弦稳态电路的功率无源一端口网络吸收的功率(u,i

关联)1.瞬时功率

(instantaneouspower)无源+ui_第一种分解方法;第二种分解方法。下页上页返回第一种分解方法:

p有时为正,有时为负;p>0,电路吸收功率;p<0,电路发出功率;t

i0upUIcos

恒定分量。UIcos

(2t-)为正弦分量。下页上页返回t0第二种分解方法:UIcos

(1-cos2t)为不可逆分量。UIsin

sin2t为可逆分量。

能量在电源和一端口之间来回交换。下页上页返回2.平均功率

(averagepower)P=u-i:功率因数角。对无源网络,为其等效阻抗的阻抗角。cos

:功率因数。P的单位:W(瓦)下页上页返回一般地,有0cos1X>0,j>0,

感性,X<0,j<0,

容性,

cosj

=0.5(感性),则j=60o

(电压领先电流60o)。cosj1,纯电阻0,纯电抗平均功率实际上是电阻消耗的功率,亦称为有功功率。表示电路实际消耗的功率,它不仅与电压电流有效值有关,而且与cos

有关,这是交流和直流的很大区别,主要由于电压、电流存在相位差。例下页上页返回4.视在功率S反映电气设备的容量。3.无功功率

(reactivepower)Q单位:var(乏)。Q>0,表示网络吸收无功功率;Q<0,表示网络发出无功功率。Q的大小反映网络与外电路交换功率的大小。是由储能元件L、C的性质决定的下页上页返回有功,无功,视在功率的关系:有功功率:

P=UIcosj

单位:W无功功率:

Q=UIsinj

单位:var视在功率:

S=UI

单位:VAjSPQ功率三角形下页上页返回5.R、L、C元件的有功功率和无功功率uiR+-PR=UIcos

=UIcos0=UI=I2R=U2/RQR=UIsin

=UIsin0=0iuL+-PL=UIcos

=UIcos90=0QL=UIsin

=UIsin90=UI=I2XLiuC+-PC=UIcos

=UIcos(-90)=0QC=UIsin

=UIsin(-90)=-UI=-

I2XC下页上页返回任意阻抗的功率计算:uiZ+-PZ=UIcos

=I2|Z|cos

=I2RQZ=UIsin

=I2|Z|sin

=I2X

=I2(XL+XC)=QL+QCjSPQjZRX相似三角形(发出无功)下页上页返回电感、电容的无功补偿作用LCRuuLuCi+-+-+-t

i0uL当L发出功率时,C刚好吸收功率,则与外电路交换功率为pL+pC。因此,L、C的无功具有互相补偿的作用。t

i0uCpLpC下页上页返回电压、电流的有功分量和无功分量:(以感性负载为例)RX+_+_+_GB+_下页上页返回jSPQjZRX相似三角形jIIGIBjUURUX下页上页返回反映电源和负载之间交换能量的速率。无功的物理意义:例下页上页返回交流电路功率的测量uiZ+-W**i1i2R电流线圈电压线圈单相功率表原理:电流线圈中通电流i1=i;电压线圈串一大电阻R(R>>L)后,加上电压u,则电压线圈中的电流近似为i2u/R。下页上页返回指针偏转角度(由M确定)与P成正比,由偏转角(校准后)即可测量平均功率P。使用功率表应注意:(1)同名端:在负载u,i关联方向下,电流i从电流线圈“*”号端流入,电压u正端接电压线圈“*”号端,此时P表示负载吸收的功率。(2)量程:P的量程=U的量程I的量程cos(表的)测量时,P、U、I均不能超量程。下页上页返回例

三表法测线圈参数。已知f=50Hz,且测得U=50V,I=1A,P=30W。解RL+_ZVAW**方法一下页上页返回方法二又方法三下页上页返回已知:电动机

PD=1000W,U=220,f=50Hz,C=30F。

求负载电路的功率因数。+_DC例解下页上页返回6.功率因数提高设备容量S

(额定)向负载送多少有功要由负载的阻抗角决定。P=UIcos=ScosjS75kVA负载cosj

=1,P=S=75kWcosj

=0.7,P=0.7S=52.5kW一般用户:异步电机

空载cosj

=0.2~0.3

满载

cosj

=0.7~0.85日光灯

cosj

=0.45~0.6

(1)设备不能充分利用,电流到了额定值,但功率容量还有;功率因数低带来的问题:下页上页返回(2)当输出相同的有功功率时,线路上电流大,

I=P/(Ucos),线路压降损耗大。i+-uZj1j2解决办法:(1)高压传输(2)改进自身设备(3)并联电容,提高功率因数。下页上页返回分析j1j2LRC+_并联电容后,原负载的电压和电流不变,吸收的有功功率和无功功率不变,即:负载的工作状态不变。但电路的功率因数提高了。特点:下页上页返回并联电容的确定:补偿容量不同全——不要求(电容设备投资增加,经济效果不明显)欠过——使功率因数又由高变低(性质不同)j1j2下页上页返回并联电容也可以用功率三角形确定:j1j2PQCQLQ从功率这个角度来看:并联电容后,电源向负载输送的有功UILcos1=UIcos2不变,但是电源向负载输送的无功UIsin2<UILsin1减少了,减少的这部分无功就由电容“产生”来

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论