下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市原平知源高级中学2022年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线的参数方程为,则直线的斜率为(
)A.
B.
C.
D.参考答案:D略2.“方程表示焦点在轴上的椭圆”是“”的(
)A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B3.已知不等式(x+y)(+)≥9对任意正实数x,y恒成立,则正实数a的最小值为()A.2 B.4 C.6 D.8参考答案:B【考点】基本不等式在最值问题中的应用.【分析】求(x+y)()的最小值;展开凑定值【解答】解:已知不等式(x+y)()≥9对任意正实数x,y恒成立,只要求(x+y)()的最小值≥9∵≥∴≥9∴≥2或≤﹣4(舍去),所以正实数a的最小值为4,故选项为B.【点评】求使不等式恒成立的参数范围,常转化成求函数最值4.已知直三棱柱的6个顶点都在球的球面上,若,,,则球的半径为()A. B. C. D.参考答案:C5.已知命题“如果p,那么q”为真,则A.q?p
B.p?q
C.q?p
D.q?p
参考答案:C略6.以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=()A.0.3 B.e0.3 C.4 D.e4参考答案:D【考点】BK:线性回归方程.【分析】我们根据对数的运算性质:loga(MN)=logaM+logaN,logaNn=nlogaN,即可得出结论.【解答】解:∵y=cekx,∴两边取对数,可得lny=ln(cekx)=lnc+lnekx=lnc+kx,令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,∴c=e4.故选:D.【点评】本题考查的知识点是线性回归方程,其中熟练掌握对数的运算性质,是解答此类问题的关键.7.元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,问一开始输入的x=()A. B. C. D.参考答案:B【分析】执行如图所示的程序框图,逐次循环计算结果,结合判断条件,即可得到答案.【详解】由题意,执行如图所示的程序框图,第一次循环:计算,不满足判断条件;第二次循环:计算,不满足判断条件;第三次循环:计算,满足判断条件;因为输出的值为,则,解得,故选B.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.8.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为()A.4 B.8 C.15 D.31参考答案:C【考点】数列递推式.【分析】由数列{an}满足a1=1,an+1=2an+1(n∈N+),分别令n=1,2,3,能够依次求出a2,a3和a4.【解答】解:∵数列{an}满足a1=1,an+1=2an+1(n∈N+),∴a2=2a1+1=2+1=3,a3=2a2+1=6+1=7,a4=2a3+1=14+1=15.故选C.9.已知,函数,若f(x)在[-1,1]上是单调减函数,则a的取值范围是(
)A. B. C. D.参考答案:C【分析】根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.【详解】因为所以
因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选C10.某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作(其中元件1,2,3正常工作的概率都为),设三个电子元件的使用寿命(单位:小时)均服从正态分布N,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为()A. B. C. D.参考答案:D【考点】C5:互斥事件的概率加法公式;C9:相互独立事件的概率乘法公式.【分析】由已知得三个电子元件的使用寿命超过1000小时的概率为p=,设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常},C={该部件的使用寿命超过1000小时},则P(A)=1﹣(1﹣)2=,P(B)=,P(C)=P(AB)=P(A)P(B),由此能求出该部件的使用寿命超过1000小时的概率.【解答】解:∵三个电子元件的使用寿命均服从正态分布N,∴三个电子元件的使用寿命超过1000小时的概率为p=,设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常},C={该部件的使用寿命超过1000小时},则P(A)=1﹣(1﹣)2=,P(B)=,故该部件的使用寿命超过1000小时的概率P(C)=P(AB)=P(A)P(B)==.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知是椭圆的半焦距,则的取值范围为
参考答案:略12.命题“,”的否定是
▲
.参考答案:略13.计算:=
。参考答案:14.在研究两个变量的关系时,可以通过残差,,…,来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为
分析。参考答案:残差15.已知a2+b2+c2=1,x2+y2+z2=9,则ax+by+cz的最大值为
参考答案:316.若直线与曲线相切,则=
.参考答案:17.m为任意实数,直线(m-1)x+(2m-1)y=m-5必过定点________.参考答案:(9,-4)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率。
参考答案:19.设函数(1)若证明:.(2)若不等式对于及恒成立,求实数的取值范围.参考答案:解:解:令则在上是增函数.故即.(2)原不等式等价于.令则.k.s.5.u令得列表如下(略)当时,.令则解得或.略20.(12分)已知集合,若,求实数m的取值范围.
参考答案:集合是方程的解集。说明方程没有实数根。又因为不满足方程,所以该方程也没有零根。则该方程有两个负实根或没有实数根…………………(3分)当时,方程没有实数根,所以…….(6分)当时,方程有两个负实数根,所以,解得………(10分)综上所述,的取值范围是……………(12分)21.(本小题满分14分)已知函数().(Ⅰ)当时,求在区间上的最大值和最小值;(Ⅱ)如果函数,在公共定义域上,满足,那么就称为的“受限函数”:已知函数,.若在区间上,函数是的“受限函数”,求的取值范围.参考答案:(Ⅰ)当时,,所以.…………2分对于,有,所以在区间上为增函数,所以,.…………4分
(Ⅱ)在区间内,函数是的“受限函数”,则.设,=,则,在恒成立,因为.
(*)
………7分(1)若,令,得极值点,,当,即时,在上有,此时在区间(,+∞)上是增函数,并且在该区间上有,不合题意;……………9分当,即时,同理可知,在区间内,有,也不合题意;……………11分(2)若,则有,此时在区间上恒有,从而在区间内是减函数;
要使在此区间上恒成立,只须满足,得,所以.……………12分 又因为,在上为减函数,所以,
所以.…………………13分综合可知的范围是.………14分22.(本小题满分12分)如图,是正方形,是正方形的中心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保公益活动策划执行合同
- 2024年物流人才培养与交流合同
- 系统开发课程设计日志
- 托班喂饭课程设计
- 苏教版小学数学课程设计
- 艺术治疗绘画课程设计
- 广东电网公司110kV车载移动式变电站技术规范书
- 洗涤废水处理课程设计
- 编辑文章课程设计意图
- 网页设计课程设计总结
- 2024年北京市第一次普通高中学业水平合格性考试英语仿真模拟卷03(全解全析)
- 2024年江苏省淮安技师学院长期招聘高技能人才3人高频考题难、易错点模拟试题(共500题)附带答案详解
- 应急救援员五级理论考试题库含答案
- 2024年导游服务技能大赛《导游综合知识测试》题库及答案
- 高中化学实验开展情况的调查问卷教师版
- 《声声慢(寻寻觅觅)》课件 统编版高中语文必修上册
- 初中物理-:八年级上学期竞赛题
- 生物治疗与再生医疗应用
- 2024年1月广东省高中学业水平考试物理试题(附答案)
- 帕金森患者生活质量问卷(PDQ-39)
- 汽车电器DFMEA-车载终端
评论
0/150
提交评论