




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市偏关县窑头乡中学2023年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在正四棱锥P-ABCD中,点P在底面上的射影为O,E为PC的中点,则直线AP与OE的位置关系是(
)
A.平行
B.相交
C.异面
D.都有可能参考答案:A2.设m,n为两条不同的直线,为平面,则下列结论正确的是(
)A., B.,C., D.,参考答案:C【分析】对每一个选项逐一判断得解.【详解】对于A,若m⊥n,m∥α时,可能n?α或斜交,故错;对于B,m⊥n,m⊥α?n∥α或m?α,故错;对于C,m∥n,m⊥α?n⊥α,正确;对于D,m∥n,m∥α?n∥α或m?α,故错;故答案为:C【点睛】(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.(2)对于类似直线平面位置关系的判断,可以利用举反例和直接证明法.3.若实数x,y满足,则x+y的最大值是()A.6 B.4 C. D.参考答案:C【分析】根据已知条件可得,由,可得,可得x+y的最大值.【详解】解:∵实数x,y满足,即.再由,可得,变形得解得,∴,故的最大值为,故选:C.【点睛】本题主要考察基本不等式的应用,属于基础题.4.一拱桥的形状为抛物线,该抛物线拱的高为h,宽为b,此抛物线拱的面积为S,若b=3h,则S等于()A.h2 B.h2 C.h2 D.2h2参考答案:D【考点】K8:抛物线的简单性质;69:定积分的简单应用.【分析】建立平面直角坐标系,设抛物线方程,将点代入抛物线方程,即可求得抛物线方程,根据定积分的几何意义,即可求得S.【解答】解:以抛物线的最高点为坐标原点,以抛物线的拱的对称轴为y轴,建立平面直角坐标系,设抛物线方程y=ax2,a<0,由抛物线经过点(,﹣h),代入抛物线方程:﹣h=a()2,解得:a=﹣,S=h×3h﹣(﹣2ax2dx),=3h2﹣2××x3=2h2,故选D.5.i是虚数单位,b∈R,2+(b﹣1)i是实数,则复数z=在复平面内表示的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:C【考点】A5:复数代数形式的乘除运算.【分析】根据2+(b﹣1)i是实数先求出b=1,然后进行化简即可.【解答】解:∵2+(b﹣1)i是实数,∴b﹣1=0,即b=1,则z====i,对应的点的坐标为(,),对应的点位于第三象限,故选:C6.已知角的终边经过点P(-3,4),则下列计算结论中正确的是
(
)A.
B.
C.
D.参考答案:A7.已知, ,且,则等于
(
)
A.-1
B.-9
C.9
D.1 参考答案:A8.已知直线l,m和平面α,β,且l⊥α,m∥β,则下列命题中正确的是A.若α⊥β,则l∥m
B.若α∥β,则l⊥mC.若l∥β,则m⊥α
D.若l⊥m,则α∥β参考答案:B9.两个正数1、9的等差中项是,等比中项是,则曲线的离心率为(
)
A.
B.
C.
D.与参考答案:D
10.已知,则函数的图像必定不经过(
)A、第一象限
B、第二象限
C、第三象限
D、第四象限参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知P是椭圆上的一点,F1,F2是椭圆的两个焦点,当时,则的面积为______.参考答案:12.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为
.(2)圆C在点B处切线在x轴上的截距为
.参考答案:(1)(x﹣1)2+(y﹣)2=2.(2)﹣1﹣.【考点】圆的标准方程;圆的切线方程.【分析】(1)确定圆心与半径,即可求出圆C的标准方程;(2)求出圆C在点B处切线方程,令y=0可得圆C在点B处切线在x轴上的截距.【解答】解:(1)由题意,圆的半径为=,圆心坐标为(1,),∴圆C的标准方程为(x﹣1)2+(y﹣)2=2;(2)由(1)知,B(0,1+),∴圆C在点B处切线方程为(0﹣1)(x﹣1)+(1+﹣)(y﹣)=2,令y=0可得x=﹣1﹣.故答案为:(x﹣1)2+(y﹣)2=2;﹣1﹣.13.如图,在一个面积为8的矩形中随机撒一粒黄豆,若黄豆落到阴影部分的概率为,则阴影部分的面积为.参考答案:2【考点】几何概型.【分析】设阴影部分的面积为x,由概率的几何概型知阴影部分面积为矩形面积的,由此能求出该阴影部分的面积.【解答】解:设阴影部分的面积为x,由概率的几何概型知,则=,解得x=2.故答案为:2.【点评】本题考查概率的性质和应用;每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型,可以用来求不规则图形的面积.14.在极坐标系中,曲线与的公共点到极点的距离为____.参考答案:
15.设数列前n项的和为Sn=3n2-2n,则an=___________;参考答案:6n-5略16.已知函数f(x)的导函数为f′(x),且,则f′(x)=
.参考答案:-117.已知是双曲线的右焦点,若双曲线的渐近线与圆相切,则双曲线的离心率为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)的直线L与椭圆C相交于A、B两点.(1).求椭圆C的方程;
(2).求的取值范围.参考答案:题:解:(1)由题意知,∴,即
又,∴
故椭圆的方程为
(2)由题意知直线AB的斜率存在,设直线PB的方程为
由得:
由得:
设A(x1,y1),B(x2,y2),则①
∴
∴
∵,∴,
∴∴的取值范围是.略19.(本题满分10分)已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(Ⅰ)求椭圆的方程;(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.参考答案:(Ⅰ)由已知得,且,解得,又 所以椭圆的方程为(Ⅱ) 当直线与轴垂直时,由椭圆的对称性可知: 点在轴上,且原点不重合,显然三点不共线,不符合题设条件. 所以可设直线的方程为, 由消去并整理得:……①
则,即,设, 且,则点, 因为三点共线,则,即,而,所以 此时方程①为,且 因为 所以20.(本小题满分12分)如图,矩形ABCD和正三角形APD中,AD=2,DC=1,E为AD的中点,现将正三角形APD沿AD折起,得到四棱锥P-ABCD,该四棱锥的三视图如下:(1)求四棱锥P-ABCD的体积;(2)求异面直线BE、PD所成角的大小。参考答案:(1);(2)450 21.(本小题10分)如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明:B1C1⊥CE;(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为.求线段AM的长.参考答案:(1)证明:因为侧棱CC1⊥平面A1B1C1D1,从而B1E2=B1C+EC,所以在△B1EC1中,B1C1⊥C1E.又CC1,C1E平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,联结C1G.由(1),B1C1⊥CE.故CE⊥平面B1C1G,得CE⊥C1G,所以∠B1GC1为二面角(3)联结D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,联结AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.22.(本小题满分13分)已知函数,其中为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东科贸职业学院《生理药理学》2023-2024学年第一学期期末试卷
- 广东警官学院《文学批评方法》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《智能运输系统概论》2023-2024学年第一学期期末试卷
- 广东技术师范大学《金融企业会计》2023-2024学年第一学期期末试卷
- 广东海洋大学《机械工程技术交流》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《机器学习原理》2023-2024学年第一学期期末试卷
- 广东第二师范学院《生物药物制剂技术》2023-2024学年第一学期期末试卷
- 广东潮州卫生健康职业学院《城市绿地规划》2023-2024学年第一学期期末试卷
- 广东财经大学《建筑设计(Ⅱ)》2023-2024学年第一学期期末试卷
- 《国际肿瘤护理进展》课件
- GB/T 30902-2014无机化工产品杂质元素的测定电感耦合等离子体发射光谱法(ICP-OES)
- GB/T 22638.2-2016铝箔试验方法第2部分:针孔的检测
- GB/T 13275-1991一般用途离心通风机技术条件
- 千年菩提路解说词
- 田中靖久颈椎病症状量表20分法
- 配气机构的设计
- 鹿茸血与养生课件
- 软件开发-项目-监理细则
- 《高一学期期末考试动员》主题班会课件
- 小升初专题工程问题与行程问题
- 低压非居民用电登记表格模板
评论
0/150
提交评论