下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市第二十一中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是平面直角坐标系中两两不同的四点,若,且,则称调和分割。已知平面上的点调和分割点,则下面说法正确的是(
)A.C可能是线段AB的中点
B.D可能是线段AB的中点C.C,D可能同时在线段AB上
D.C,D不可能同时在线段AB的延长线上参考答案:D2.是虚数单位,则复数的虚部等于()
A.1
B.
C.
D.参考答案:A略3.若偶函数f(x)在(﹣∞,﹣1]上是增函数,则()A.f(﹣1.5)<f(﹣1)<f(2) B.f(﹣1)<f(﹣1.5)<f(2) C.f(2)<f(﹣1)<f(﹣1.5) D.f(2)<f(﹣1.5)<f(﹣1)参考答案:D【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】由函数的奇偶性、单调性把f(2)、f(﹣1.5)、f(﹣1)转化到区间(﹣∞,﹣1]上进行比较即可.【解答】解:因为f(x)在(﹣∞,﹣1]上是增函数,又﹣2<﹣1.5<﹣1≤﹣1,所以f(﹣2)<f(﹣1.5)<f(﹣1),又f(x)为偶函数,所以f(2)<f(﹣1.5)<f(﹣1).故选D.【点评】本题考查函数的奇偶性、单调性的综合运用,解决本题的关键是灵活运用函数性质把f(2)、f(﹣1.5)、f(﹣1)转化到区间(﹣∞,﹣1]上解决.4.某几何体的三视图如图所示,则它的体积是()A.8-
B.8-C.8-2π
D.参考答案:A5.若偶函数在为增函数,则不等式的解集为A.
B.
C.
D.参考答案:B6.函数的定义域是().A.[-1,+∞)
B.(-∞,0)∪(0,+∞)C.[-1,0)∪(0,+∞)
D.R参考答案:C略7.已知为奇函数,,,则(
)A. B.1 C. D.2参考答案:C已知为奇函数,,令可得,即,则,令可得,故选C.8.已知等差数列{an},,其前n项和为Sn,,则=(
)A.0 B.1 C.2018 D.2019参考答案:A【分析】设等差数列的公差为,由即可求得,结合等差数列前项和公式即可得解。【详解】设等差数列的公差为,则,所以,,代入得:.所以.故选:A【点睛】本题主要考查了等差数列前项和公式,考查方程思想及计算能力,属于中档题。9.化简:=(
)A.
B.
C.
D.参考答案:B10.从随机编号为0001,0002,…,1500的1500名参加这次南昌市四校联考期末测试的学生中用系统抽样的方法抽取一个样本进行成绩分析,已知样本中编号最小的两个编号分别为0018,0068,则样本中最大的编号应该是()A.1466 B.1467 C.1468 D.1469参考答案:C【考点】B4:系统抽样方法.【分析】根据系统抽样的定义确定样本间隔即可.【解答】解:样本中编号最小的两个编号分别为0018,0068,则样本间隔为68﹣18=50,则共抽取1500÷50=30,则最大的编号为18+50×29=1468,故选:C二、填空题:本大题共7小题,每小题4分,共28分11.计算:+=_________参考答案:4312.若函数f(x)=loga(x﹣3)+2(a>0且a≠1)的图象过定点(m,n),则logmn=.参考答案:【考点】对数函数的图像与性质.【专题】计算题;转化思想;数学模型法;函数的性质及应用.【分析】令x﹣3=1,可得函数f(x)=loga(x﹣3)+2(a>0且a≠1)的图象过定点坐标,进而得到答案.【解答】解:令x﹣3=1,则x=4,则f(4)=2恒成立,即函数f(x)=loga(x﹣3)+2(a>0且a≠1)的图象过定点(4,2),即m=4,n=2,∴logmn=log42=,故答案为:.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.13.已知sin(700+α)=,则cos(2α)=
.参考答案:略14.参考答案:略15.已知向量,,,若用和表示,则=____。参考答案:
解析:设,则
16.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是_____________.参考答案:略17.已知,则的值为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)(2015秋潍坊期末)已知函数f(x)=logax+a﹣e(a>0且a≠1,e=2.71828…)过点(1,0). (1)求函数f(x)的解析式; (2)设函数g(x)=f2(x)﹣2f(e2x)+3,若g(x)﹣k≤0在x∈[e﹣1,e2]上恒成立,求k的取值范围; (3)设函数h(x)=af(x+1)+mx2﹣3m+1在区间(﹣,2]上有零点,求m的取值范围. 参考答案:【考点】对数函数的图象与性质;函数零点的判定定理. 【专题】分类讨论;转化法;函数的性质及应用. 【分析】(1)把点(1,0)代入函数解析式,求出a的值即得f(x)的解析式; (2)化简函数g(x),把g(x)﹣k≤0在x∈[e﹣1,e2]上恒成立转化为求g(x)在x∈[e﹣1,e2]上的最大值问题,从而求出k的取值范围; (3)化简函数h(x),讨论m的取值,求出h(x)在区间(﹣,2]上有零点时m的取值范围. 【解答】解:(1)∵函数f(x)=logax+a﹣e过点(1,0), ∴f(1)=a﹣e=0, 解得a=e, ∴函数f(x)=lnx; (2)∵函数g(x)=f2(x)﹣2f(e2x)+3 =ln2x﹣2ln(e2x)+3 =ln2x﹣2lnx﹣1 =(lnx﹣1)2﹣2, 又g(x)﹣k≤0在x∈[e﹣1,e2]上恒成立, ∴g(x)≤k在x∈[e﹣1,e2]上恒成立, ∴g(x)在x∈[e﹣1,e2]上的最大值是 gmax(x)=g(e﹣1)=(﹣2)2﹣2=2, ∴k的取值范围是k≥2; (3)∵函数h(x)=af(x+1)+mx2﹣3m+1 =eln(x+1)+mx2﹣3m+1 =(x+1)+mx2﹣3m+1,其中x>﹣1; 又h(x)在区间(﹣,2]上有零点, 当m=0时,h(x)=x+2的零点是﹣2,不满足题意; 当m≠0时,有f(﹣1)f(2)≤0, 即(m﹣3m+1)(3+4m﹣3m+1)≤0, 解得m≤﹣4或m≥, ∴m的取值范围是m≤﹣4或m≥. 【点评】本题考查了对数函数的图象与性质的应用问题,也考查了复合函数的性质与应用问题,考查了不等式的解法与应用问题,零点的判断问题,同时也考查了分类讨论的数学思想,是综合性题目. 19.设直线l的方程为.(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.参考答案:(1)(2)的取值范围是【分析】(1)分别求出横截距与纵截距,令其相等即可解出a的值,代入方程即可得到直线方程;(2)由于不过第二象限所以斜率大于等于0,纵截距小于等于0,由题意列不等式组即可求得参数范围.【详解】(1)令方程横截距与纵截距相等:,解得:或0,代入直线方程即可求得方程:,;(2)由l的方程为y=-(a+1)x+a-2,欲使l不经过第二象限,当且仅当解得a≤-1,故所求a的取值范围为(-∞,-1].【点睛】本题考查直线方程的系数与直线的位置关系,纵截距决定直线与y轴的交点,斜率决定直线的倾斜程度,解题时注意斜率与截距等于0的特殊情况,需要分别讨论,避免漏解.20.(本小题满分12分)已知函数. (Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)若,求函数的值域.参考答案: 解:(Ⅰ)f(x)=cosx(sinx+cosx)+1 =cos2x+sinxcosx+1 =+1 =cos2x+sin2x+ =sin(2x+)+ ∵T=== 即函数f(x)的最小正周期为. 由f(x)=sin(2x+)+ 由2k-≤2x+≤2k+, 解得:-+k≤x≤+k, 故函数f(x)=sin(2x+)+的单调递增区间为[-+k,+k],。 (Ⅱ)x[-,],-≤2x≤,-≤2x+≤ ∴-≤sin(2x+)≤1 ∴1≤sin(2x+)+≤ ∴函数的值域为[1,].21.已知,设:函数在R上单调递减;:函数的图象与x轴至少有一个交点.如果P与Q有且只有一个正确,求的取值范围.参考答案:函数在R上单调递减;函数的图象与x轴至少有一个交点,即≥0,解之得≤或≥.(1)若P正确,Q不正确,则即.(2)若P不正确,Q正确,则即综上可知,所求的取值范围是.22.已知向量与的夹角为,||=2,||=3,记=3﹣2,=2+k(I)若⊥,求实数k的值;(II)当k=﹣时,求向量与的夹角θ.参考答案:【考点】平面向量数量积的运算;平行向量与共线向量.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国均苯四甲酸二酐产业前景趋势展望及投资战略决策报告
- 2024-2030年中国发动机轴承橡胶模行业市场运营模式及未来发展动向预测报告
- 2024年生态修复工程用草种采购合同
- 2024年生态旅游区门面房买卖合同范本3篇
- 2024年版地下水开采合同3篇
- 2024年珠宝首饰租赁协议2篇
- 2024年企事业单位食堂餐饮承包合同及员工餐饮健康促进3篇
- 2018企业首席质量官培训考核试题(综合卷)
- 2024年标准离婚股权分割合同模板版B版
- 2025年深圳从业资格证货运模拟考试下载
- Unit 7单元教案 2024-2025学年人教版(2024)七年级英语上册
- Unit 6 My sweet home(教学设计)-2024-2025学年外研版(三起)(2024)小学英语三年级上册
- 北师大版教案正比例函数案例分析
- 行政文秘笔试题
- 人教版(2024)七年级地理上册跨学科主题学习《探索外来食料作物传播史》精美课件
- 2024-2025学年七年级数学上册第一学期 期末模拟测试卷(湘教版)
- 职业素质养成(吉林交通职业技术学院)智慧树知到答案2024年吉林交通职业技术学院
- 《红楼梦》第5课时:欣赏小说人物创作的诗词(教学教学设计)高一语文同步备课系列(统编版必修下册)
- 【新教材】苏科版(2024)七年级上册数学第1-6章全册教案设计
- 天津2024年天津市应急管理局招聘应急管理综合行政执法专职技术检查员笔试历年典型考题及考点附答案解析
- 工业物联网(IIoT)行业发展全景调研与投资趋势预测研究报告
评论
0/150
提交评论