山西省太原市第三十八中学高二数学理月考试题含解析_第1页
山西省太原市第三十八中学高二数学理月考试题含解析_第2页
山西省太原市第三十八中学高二数学理月考试题含解析_第3页
山西省太原市第三十八中学高二数学理月考试题含解析_第4页
山西省太原市第三十八中学高二数学理月考试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市第三十八中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线(a>0,b>0)的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为(

)参考答案:D略2.设等差数列的前n项和为,若,,则当取最小值时,n=(

)A.6

B.7

C.8

D.9参考答案:A3.若关于的不等式内有解,则实数的取值范围是(

)

A.

B.

C.

D.参考答案:C4.若不等式ax2+5x﹣2>0的解集是{x|<x<2},则a的值为()A.﹣ B.2 C.﹣2 D.参考答案:C【考点】一元二次不等式的解法.【专题】计算题;方程思想;定义法;不等式的解法及应用.【分析】根据一元二次不等式与一元二次方程之间的关系可得,2为方程ax2+5x﹣2=0的两根然后根据韦达定理求出a的值.【解答】解:∵不等式ax2+5x﹣2>0的解集为{x|<x<2},∴,2为方程ax2+5x﹣2=0的两根,∴根据韦达定理可得∴×2=﹣∴a=﹣2故选:C.【点评】本题主要考察一元二次不等式与一元二次方程之间的关系.解题的关键是一元二次不等式与一元二次方程之间的关系的转化与应用.5.如果函数y=(a2-4)x在定义域内是减函数,则a的取值范围是()a.|a|>2

b.|a|>c.|a|<

d.2<|a|<参考答案:D∵0<a2-4<1,∴4<a2<.∴2<|a|<.6.已知等差数列{an}的前n项和为Sn,向量=(n,),=(m,),=(k,)(n,m,k∈N*),且=λ?+μ?,则用n、m、k表示μ=()A.B. C.D.参考答案:C【考点】平面向量的基本定理及其意义.【分析】首先判断出点P1,P,P2共线,根据向量共线定理,设则===,所以μ=t,转化为求t.【解答】解:设等差数列{an}的首项a1,公差为d,则=a1+d=+(a1﹣),数列{}是等差数列,所以点P1,P,P2共线,设则===,所以μ=t又=(n﹣m,(n﹣m)),=(k﹣m,(k﹣m)),所以t=,即μ=故选C.【点评】本题考查平面向量的运算,向量共线的判定和性质.7.过点作圆的两条切线,切点分别为A、B,O为坐标原点,则△OAB的外接圆方程为(

)A. B.C. D.参考答案:A由题意知,OA⊥PA,BO⊥PB,∴四边形AOBP有一组对角都等于90°,∴四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,OP的中点为(2,1),OP="2"5,∴四边形AOBP的外接圆的方程为,∴△AOB外接圆的方程为.

8.设M=2a(a﹣2),N=(a+1)(a﹣3),则有()A.M>NB.M≥NC.M<ND.M≤N参考答案:A略9.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种 B.180种 C.300种 D.345种参考答案:D【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51?C31?C62=225种选法;(2)乙组中选出一名女生有C52?C61?C21=120种选法.故共有345种选法.故选D10.设x>0,由不等式x+≥2,x+≥3,x+≥4,…,推广到x+≥n+1,则a=()A.2n B.2n C.n2 D.nn参考答案:D【考点】F1:归纳推理.【分析】结合已知的三个不等式发现第二个加数的分子是分母x的指数的指数次方,由此得到一般规律.【解答】解:设x>0,由不等式x+≥2,x+≥3,x+≥4,…,推广到x+≥n+1,所以a=nn;故选D.【点评】本题考查了合情推理的归纳推理;关键是发现已知几个不等式中第二个加数的分子与分母中x的指数的变化规律,找出共同规律.二、填空题:本大题共7小题,每小题4分,共28分11.方程在上有解,则实数的取值范围是

.参考答案:12.参考答案:7略13.函数f(x)=ax2+2(a-1)x+2在区间(-∞,4)上为减函数,则a的取值范围为

参考答案:

14.甲、乙、丙三人站成一排,则甲、乙相邻的概率是_________.参考答案:试题分析:甲、乙、丙三人站成一排,共有种排法,其中甲、乙相邻共有种排法,因此所求概率为考点:古典概型概率【方法点睛】古典概型中基本事件数的计算方法(1)列举法:此法适合于较简单的试验.(2)树状图法:树状图是进行列举的一种常用方法,适合较复杂问题中基本事件数的探求.(3)列表法:对于表达形式有明显二维特征的事件采用此法较为方便.(4)排列、组合数公式法.15.

数列{an}为等比数列,且满足a2007+a2010+a2016=2,a2010+a2013+a2019=6,则a2007+a2010+a2013+a2016+a2019等于(

)A.

B.C.

D.参考答案:C易得a2007(1+q3+q9)=2,a2010(1+q3+q9)=6,两式相除,得到==,得q3=3,将其代入a2010(1+q3+q9)=6,得a2010=,故所求为(a2007+a2010+a2016)+(a2010+a2013+a2019)-a2010=2+6-a2010=.16..如图,ABC是圆的内接三角形,PA切圆于点A,PB交圆于点D.若ABC=60°,PD=1,BD=8,则PAC=______,PA=_________参考答案:略17.设p:|4x﹣3|≤1;q:(x﹣a)(x﹣a﹣1)≤0,若p是q的充分不必要条件,则实数a的取值范围是.参考答案:【考点】必要条件、充分条件与充要条件的判断.【分析】解绝对值不等式|4x﹣3|≤1,我们可以求出满足命题p的x的取值范围,解二次不等式(x﹣a)(x﹣a﹣1)≤0,我们可求出满足命题q的x的取值范围,根据p是q的充分不必要条件,结合充要条件的定义,我们可以构造关于a的不等式组,解不等式组即可得到实数a的取值范围.【解答】解:命题p:|4x﹣3|≤1,即≤x≤1命题q:(x﹣a)(x﹣a﹣1)≤0,即a≤x≤a+1∵p是q的充分不必要条件,∴解得0≤a≤故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.BQ=t(1)若在边BC上存在一点Q,使PQ⊥QD,求a与t关系;(2)在(1)的条件下求a的取值范围;(3)(理科做,文科不做)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A﹣PD﹣Q的余弦值.参考答案:【考点】二面角的平面角及求法.【专题】空间角.【分析】(1)利用直角三角形的勾股定理得到a,t的关系;(2)利用(1)的结论结合基本不等式求a的范围;(3)由(Ⅰ)知,当t=2,a=4时,边BC上存在唯一点Q(Q为BC边的中点),使PQ⊥QD.过Q作QM∥CD交AD于M,则QM⊥AD.得到平面角∠MNQ是二面角A﹣PD﹣Q的平面角,结合直角三角形的余弦求之.【解答】解:(1)如图,连接AQ,由于PA⊥平面ABCD,则由PQ⊥QD,必有AQ⊥DQ.设,则CQ=a﹣t,在直角三角形MBQ中中,有AQ=.在Rt△CDQ中,有DQ=.

…(4分)在Rt△ADQ中,有AQ2+DQ2=AD2.即t2+4+(a﹣t)2+4=a2,即t2﹣at+4=0.(2)由(1)得a=t+≥4.故a的取值范围为[4,+∞).(3)由(Ⅰ)知,当t=2,a=4时,边BC上存在唯一点Q(Q为BC边的中点),使PQ⊥QD.过Q作QM∥CD交AD于M,则QM⊥AD.∵PA⊥平面ABCD,∴PA⊥QM.∴QM⊥平面PAD.过M作MN⊥PD于N,连结NQ,则QN⊥PD.∴∠MNQ是二面角A﹣PD﹣Q的平面角.在等腰直角三角形PAD中,可求得MN=,又MQ=2,进而NQ=.∴cos∠MNQ=.故二面角A﹣PD﹣Q的余弦值为.【点评】本题考查了直角三角形的勾股定理以及二面角的平面角求法,关键在正确找出平面角,属于中档题.19.已知数列,设,数列。(Ⅰ)求证:是等差数列;(Ⅱ)求数列的前n项和Sn;(Ⅲ)若一切正整数n恒成立,求实数m的取值范围。参考答案:证明:(1)由题意知,……1分……………2分……………3分∴数列的等差数列……4分(2)解:由(1)知,…………5分…6分……………7分两式相减得………8分……9分(3)…………10分∴当n=1时,…11分∴当n=1时,取最大值是………………12分又……13分即……14分

略20.已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB

(2)DE·DC=AE·BD.参考答案:证明:(1)∵四边形ABCD是等腰梯形,∴AC=DB∵AB=DC,BC=CB,∴△ABC≌△BCD。。。。。。。。。。。。。。。。。。。。5分(2)∵△ABC≌△BCD,∴∠ACB=∠DBC,∠ABC=∠DCB∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC。。。。。。。。。。。。。8分∵ED∥AC,∴∠EDA=∠DAC

∴∠EDA=∠DBC,∠EAD=∠DCB∴△ADE∽△CBD

∴DE:BD=AE:CD,

∴DE·DC=AE·BD.。。。。。。。10分21.(本小题满分16分)某固定在墙上的广告金属支架如图所示,根据要求,至少长米,C为的中点,到的距离比的长小米,.(1)若将支架的总长度表示为的函数,并写出函数的定义域.(注:支架的总长度为图中线段和长度之和)(2)如何设计的长,可使支架总长度最短.参考答案:(1)由则,且,则支架的总长度为,在中,由余弦定理,

化简得

………4分记

,由,则.故架的总长度表示为的函数为定义域为………………8分(2)由题中条件得,即,

则原式=

………………12分由基本不等式,有且仅当,即时“=”成立,又由满足.

,.当时,金属支架总长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论