下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市贾家屯中学2021-2022学年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知定义在R上的奇函数f(x),当时,恒有,且当时,,则(
)A.0
B.e
C.
D.参考答案:D由题意可知,函数是周期为2的奇函数,则:,,据此可得:.本题选择D选项.
2.(3分)用数学归纳法证明等式1+3+5+…+(2n﹣1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到()A.1+3+5+…+(2k+1)=k2B.1+3+5+…+(2k+1)=(k+1)2C.1+3+5+…+(2k+1)=(k+2)2D.1+3+5+…+(2k+1)=(k+3)2参考答案:考点:数学归纳法.专题:阅读型.分析:首先由题目假设n=k时等式成立,代入得到等式1+3+5+…+(2k﹣1)=k2.当n=k+1时等式左边=1+3+5++(2k﹣1)+(2k+1)由已知化简即可得到结果.解答:因为假设n=k时等式成立,即1+3+5+…+(2k﹣1)=k2当n=k+1时,等式左边=1+3+5+…+(2k﹣1)+(2k+1)=k2+(2k+1)=(k+1)2.故选B.点评:此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.3.对于平面α和共面的直线m,n,下列命题是真命题的是
A.若m,n与α所成的角相等,则m//n
B.若m//α,n//α,则m//n
C.若m⊥α,m⊥n,则n//α
B.若则m//n参考答案:D4.已知为全集,,则(A)
(B)(C)
(D)参考答案:5.已知向量,满足,,,若M为AB的中点,并且,则点的轨迹方程是(
)A.
B.C.
D.参考答案:D由于是中点,中,,,所以,所以故选:D
6.若集合A={x|3+2x﹣x2>0},集合B={x|2x<2},则A∩B等于()A.(1,3) B.(﹣∞,﹣1) C.(﹣1,1) D.(﹣3,1)参考答案:C【考点】1E:交集及其运算.【分析】分别求出关于集合A、B中x的范围,取交集即可.【解答】解:∵集合A={x|3+2x﹣x2>0}={x|﹣1<x<3},集合B={x|2x<2}={x|x<1},则A∩B={x|﹣1<x<1},故选:C.7.设{an}是公差不为零的等差数列,满足,则该数列的前10项和等于()A.﹣10 B.﹣5 C.0 D.5参考答案:C【考点】等差数列的前n项和.【分析】设出等差数列的首项和公差,把已知等式用首项和公差表示,得到a1+a10=0,则可求得数列的前10项和等于0.【解答】解:设等差数列{an}的首项为a1,公差为d(d≠0),由,得,整理得:2a1+9d=0,即a1+a10=0,∴.故选:C.8.已知函数f(x)=x3+ax2+bx+c,g(x)=3x2+2ax+b(a,b,c是常数),若f(x)在(0,1)上单调递减,则下列结论中:①f(0)?f(1)≤0;②g(0)?g(1)≥0;③a2﹣3b有最小值.正确结论的个数为()A.0 B.1 C.2 D.3参考答案:B【考点】命题的真假判断与应用.【分析】由f(x)在(0,1)上单调递减,可得g(x)=3x2+2ax+b≤0在(0,1)上恒成立,则3x2+2ax+b=0有两个不等的实根根,进而判断三个命题的真假,可得答案.【解答】解:函数f(x)=x3+ax2+bx+c在(0,1)上单调递减,但f(0),f(1)的符号不能确定,故①f(0)?f(1)≤0不一定正确;由f′(x)=3x2+2ax+b≤0在(0,1)上恒成立,即g(x)=3x2+2ax+b≤0在(0,1)上恒成立,故g(0)≤0,且g(1)≤0,故②g(0)?g(1)≥0一定正确;由g(0)≤0,且g(1)≤0得b≤0,3+2a+b≤0,令Z=a2﹣3b,则b=(a2﹣Z),当b=(a2﹣Z)过(﹣,0)点时,Z取最小值故③正确;故选:B9.记等比数列的前项和为,若,,则(
)A.2 B.6 C.16 D.20参考答案:D略10.若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为()A. B.1 C. D.2参考答案:C【考点】简单线性规划的应用.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再分析当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的形状,然后代入相应的公式,求出区域的面积.【解答】解析:作出可行域,如图,则直线扫过的面积为故选C.二、填空题:本大题共7小题,每小题4分,共28分11.全集U=R,f(x),g(x)均为二次函数,P={x|f(x)<0,Q={x|g(x)≥0},则不等式组
的解集可用P、Q表示
。参考答案:12.把圆柱体的侧面沿母线展开后得到一个矩形,若矩形的一组邻边长分别为,则该圆柱体的体积是
.参考答案:13.在的展开式中,含项的系数是
.参考答案:-44本题考查二项式定理的应用,考查运算求解能力.,依题意有.14.如图所示,在△ABC中,AD是高线,是中线,DC=BE,DGCE于G,
EC的长为8,则EG=__________________.
参考答案:【知识点】几何证明N14解析:连接DE,在中,为斜边的中线,所以.又,DGCE于G,∴DG平分EC,故.【思路点拨】由中,为斜边的中线,可得,所以为直角三角形.15.一个边长为10cm的正方形铁片,把图中所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.则这个容器侧面积S表示成x的函数为
.参考答案:S=10x(0<x<10)白色的三角形的面积为,正四棱锥的侧面积为S=4S△=10x(0<x<10)16.在△OAB中,O为坐标原点,A(1,cosθ),B(sinθ,1),θ∈(0,],则当△OAB的面积达到最大值时,θ等于_________________.参考答案:略17.设向量=(x,x+1),=(1,2),且⊥,则x=.参考答案:【考点】数量积判断两个平面向量的垂直关系.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,四棱锥中,底面为正方形,平面,,点分别为的中点.(1)求证:;(2)求二面角的余弦值.参考答案:以点为坐标原点,建立如图所示的空间直角坐标系,则,,,,,,.(1)∵,,则,∴.(2)易知,,设平面的法向量,则,即,令,则是平面的一个法向量,同理可得是平面的一个法向量,∴,由图可知二面角为钝角,∴二面角的余弦值为.19.已知f(x)=xlnx,g(x)=x3+ax2﹣x+2.(1)求函数f(x)的单调区间;(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】计算题;转化思想.【分析】(1)先求出其导函数,再让其导函数大于0对应区间为增区间,小于0对应区间为减区间即可.(注意是在定义域内找单调区间.)(2)已知条件可以转化为a≥lnx﹣x﹣恒成立,对不等式右边构造函数,利用其导函数求出函数的最大值即可求实数a的取值范围.【解答】解:(1)f′(x)=lnx+1,令f′(x)<0得:0<x<,∴f(x)的单调递减区间是(0,)令f'(x)>0得:,∴f(x)的单调递增区间是(2)g′(x)=3x2+2ax﹣1,由题意2xlnx≤3x2+2ax+1∵x>0,∴a≥lnx﹣x﹣恒成立①设h(x)=lnx﹣﹣,则h′(x)=﹣=﹣令h′(x)=0得:x=1,x=﹣(舍去)当0<x<1时,h′(x)>0;当x>1时,h'(x)<0∴当x=1时,h(x)有最大值﹣2若①恒成立,则a≥﹣2,即a的取值范围是[﹣2,+∞).(13分)【点评】本题主要考查利用导数求闭区间上函数的最值以及利用导数研究函数的单调性.这类题目是高考的常考题.20.(本小题10分)选修4—1:几何证明选讲如图,是☉外一点,是切线,为切点,割线与☉相交于点,,又=2,为的中点,的延长线交☉于点.证明:(1)=;(2)·=2.参考答案:(1)连结,,由题设知=,故∠=∠.因为∠=∠+∠
∠=∠+∠∠=∠,所以∠=∠,从而.因此=……………5分(2)由切割线定理得=·.
因为==,所以=,=,由相交弦定理得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 翻译公司译员招聘协议
- 房地产公司办公费用控制
- 机电工程人工费施工合同
- 中心站服务改进战略
- 工程公司职工胸牌管理办法
- 网络安全招投标小组职责探讨
- 农场兽医服务合同范本
- 《Excel数据获取与处理实战》 课件 第7章 函数的应用-1
- 2022年大学生物工程专业大学物理下册月考试题A卷-含答案
- 防盗门锁系统
- 新能源汽车毕业设计选题
- 升旗手演讲稿(10篇)
- 化工手册完整
- 高等电力系统分析-课件
- 四年级语文上册第六单元【集体备课】课件
- 企业宣传册课件
- 选矿厂设计-中国矿业大学中国大学mooc课后章节答案期末考试题库2023年
- 机械加工工时定额时间标准
- 事业单位政审表
- (全)顶板后浇带预封闭施工工艺
- GB 19517-2023国家电气设备安全技术规范
评论
0/150
提交评论