高中数学必修3-全册复习课课件_第1页
高中数学必修3-全册复习课课件_第2页
高中数学必修3-全册复习课课件_第3页
高中数学必修3-全册复习课课件_第4页
高中数学必修3-全册复习课课件_第5页
已阅读5页,还剩74页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

必修3复习第一章算法算法知识结构:基本概念算法基本结构表示方法应用自然语言程序框图基本算法语句顺序结构条件结构循环结构辗转相除法和更相减损数秦九韶算法进位制赋值语句条件语句循环语句输入、输出语句算法的定义:

通常指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。算法最重要的特征:1.有序性2.确定性3.有限性

用程序框、流程线及文字说明来表示算法的图形称为程序框图,它使算法步骤显得直观、清晰、简明.终端框(起止框)

输入、输出框

处理框(执行框)

判断框

流程线○连接点二、程序框图二、程序框图1、顺序结构

2、条件结构

3、循环结构步骤n步骤n+1满足条件?步骤A步骤B是否满足条件?步骤A是否循环体满足条件?否是循环体满足条件?是否先做后判,否去循环先判后做,是去循环二、程序框图3、循环结构AP是否否

是AP(A)AP否是(C)是

否AP(B)(D)直到型循环结构对应的程序框图是当型循环结构对应的程序框图是直到型循环结构当型循环结构

AD

设计一个计算1+2+3+……+100的值的算法,并画出程序框图。算法:第一步:令i=1,s=0;第二步:s=s+i第三步:i=i+1;第四步:直到i>100时,输出S,结束算法,否则返回第二步。程序框图如下:i>100?i=1开始输出s结束否是s=0i=i+1s=s+i否

是循环体条件循环结构直到型循环结构

设计一个计算1+2+3+……+100的值的算法,并画出程序框图。算法:第一步:令i=1,s=0;第二步:若i<=100成立,则执行第三步;否则,输出s,结束算法;第三步:s=s+i;第四步:i=i+1,返回第二步。i<=100?i=1开始输出s结束否是s=0i=i+1s=s+i当型循环结构程序框图如下:循环体条件是否语句一般格式主要功能说明1.输入语句2.输出语句3.赋值语句INPUT“提示内容”;变量PRINT“提示内容”;表达式变量=表达式可对程序中的变量赋值可输出表达式的值,计算可对程序中的变量赋值,计算(1)提示内容和它后面的“;”可以省略(2)一个语句可以给多个变量赋值,中间用“,”分隔(3)无计算功能(1)表达式可以是变量,计算公式,或系统信息(2)一个语句可以输入多个表达式,中间用“,”分隔(3)有计算功能(1)“=”的右侧必须是表达式,左侧必须是变量(2)一个语句只能给一个变量赋(3)有计算功能三.五种基本算法语句(4)条件语句IF-THEN-ELSE格式

IF-THEN格式

IF

条件THEN语句1ELSE语句2ENDIF满足条件?语句1语句2是否IF

条件THEN语句ENDIF满足条件?语句是否(5)循环语句①WHILE语句②UNTIL语句WHILE

条件循环体WEND满足条件?循环体是否DO循环体LOOPUNTIL条件满足条件?循环体是否

成立AP不成立AP成立不成立While(当型)循环Until(直到型)循环两种循环结构有什么差别?先执行循环体,然后再检查条件是否成立,如果不成立就重复执行循环体,直到条件成立退出循环。先判断指定的条件是否为真,若条件为真,执行循环条件,条件为假时退出循环。先执行后判断先判断后执行编写程序,求和1+2+3+…+n。开始结束输入ns=(n+1)n/2输出sINPUTns=(n+1)

n/2*PRINT“S=”;S程序语句:输入语句赋值语句输出语句顺序结构:END变量=表达式练:编写一程序,求实数X的绝对值。条件结构:开始输入XX≥0输出X输出-X结束YNIFX>=0THENPRINTXELSEPRINT-XENDIF程序:INPUTXEND条件语句:i=1S=0WHILE

i<=100S=S+ii=i+1WENDPRINTSEND当型循环语句当型循环语句练:设计一算法,求和1+2+3+…+100。循环体条件是否WHILE条件循环体WEND开始

结束

输出S是否程序框图:程序语句:当型循环结构i=1S=0DOS=S+ii=i+1LOOPUNTIL

i>100PRINTSEND开始结束

输出S直到型循环语句直到型循环语句否是否

是循环体条件DO循环体LOOPUNTIL

条件直到型循环结构一、辗转相除法(欧几里得算法)1、定义:所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数。以求8251和6105的最大公约数的过程为例步骤:8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0显然37是148和37的最大公约数,也就是8251和6105的最大公约数

所谓更相减损术,就是对于给定的两个数,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,再用较大的数减去较小的数,反复执行此步骤直到差数和较小的数相等,此时相等的两数便为原来两个数的最大公约数。二更相减损术定义例:用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减98-63=35

63-35=28

35-28=7

28-7=2121-7=2114-7=7所以,98和63的最大公约数等于7方法:比较辗转相除法与更相减损术的区别(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。1、用更相减损术求两个正数84与72的最大公约数.

练习:思路分析:先约简,再求21与18的最大公约数,然后乘以两次约简的质因数4。2、求324、243、135这三个数的最大公约数。思路分析:求三个数的最大公约数可以先求出两个数的最大公约数,第三个数与前两个数的最大公约数的最大公约数即为所求。《数书九章》——秦九韶算法设是一个n次的多项式对该多项式按下面的方式进行改写:要求多项式的值,应该先算最内层的一次多项式的值,即然后,由内到外逐层计算一次多项式的值,即这种将求一个n次多项式f(x)的值转化成求n个一次多项式的值的方法,称为秦九韶算法。思考:在求多项式的值上,这是怎样的一个转化?例:用秦九韶算法求多项式 f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.解法一:首先将原多项式改写成如下形式: f(x)=((((2x-5)x-4)x+3)x-6)x+7v0=2v1=v0x-5=2×5-5=5v2=v1x-4=5×5-4=21v3=v2x+3=21×5+3=108v4=v3x-6=108×5-6=534v5=v4x+7=534×5+7=2677所以,当x=5时,多项式的值是2677.然后由内向外逐层计算一次多项式的值,即2-5-43-67x=5105252110510854053426702677所以,当x=5时,多项式的值是2677.原多项式的系数多项式的值.例.用秦九韶算法求多项式 f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.解法二:列表2一、进位制进位制是人们为了计数和运算方便而约定的记数系统。进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。“满几进一”就是几进制,几进制的基数就是几.基数:二进制、七进制、八进制、十二进制、六十进制等二进制只有0和1两个数字,七进制用0~6七个数字十六进制有0~9十个数字及ABCDEF六个字母.

式中1处在百位,第一个3所在十位,第二个3所在个位,5和9分别处在十分位和百分位。十进制数是逢十进一的。

我们最常用最熟悉的就是十进制数,它的数值部分是十个不同的数字符号0,1,2,3,4,5,6,7,8,9来表示的。十进制:例如133.59,它可用一个多项式来表示:133.59=1*102+3*101+3*100+5*10-1+9*10-2

为了区分不同的进位制,常在数的右下角标明基数,十进制一般不标注基数.例如十进制的133.59,写成133.59(10)七进制的13,写成13(7);二进制的10,写成10(2)

一般地,若k是一个大于1的整数,那么以k为基数的k进制可以表示为一串数字连写在一起的形式:二进制与十进制的转换1、二进制数转化为十进制数例1:将二进制数110011(2)化成十进制数。解:根据进位制的定义可知所以,110011(2)=51.把其他进位制的数化为十进制数的公式是什么?注意:1.最后一步商为0,2.将上式各步所得的余数从下到上排列,得到:

89=1011001(2)522212010余数11224489222201101练习将下面的十进制数化为二进制数?(1)10(2)20十进制转换为二进制方法:除2取余法,即用2连续去除89或所得的商,然后取余数。例、把89化为二进制数例:把89化为五进制数。解:根据除k取余法以5作为除数,相应的除法算式为:所以,89=324(5)895175350423余数除k取余法:十进制数转化为k进制数的方法

用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数,就是相应的k进制数。考题剖析

[点评]本小题考查程序框图中的循环结构,主要是根据框图,找到规律。解:由程序知s=2×1+2×2+┄+2×50=2550故选(C)

例、(2007海南、宁夏)如果执行下面的程序框图,那么输出的s=()。

A2450B2500C2550D2652输出s结束开始否是s=0s=s+2kk=1k=k+1k≤50?考题剖析

[点评]本题考查条件结构的程序框图,求解时,对字母比较难理解,可以取一些特殊的数值,代进去,方便理解。解:由程序框图可知第一个判断框作用是比较x与b的大小,故第二个判断框的作用应该是比较x与c的大小。故选(A)例、(2008海南、宁夏)右面的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()。Ac>xBx>cCc>bDb>c结束输出xx=c否是x=bb>x?输入a,b,c开始x=a是否(2010安徽理数)如图所示,程序框图(算法流程图)的输出值________。【解析】程序运行如下:输出12

.例、如图给出了一个算法流程图,该算法流程图的功能是()A.求a,b,c三数的最大数B.求a,b,c三数的最小数C.将a,b,c按从小到大排序D.将a,b,c按从大到小排序第二章统计统计用样本估计总体随机抽样简单随机抽样系统抽样分层抽样变量间的相关关系用样本的频率布估计总体分布用样本的数字特征估计总体数字特征线性回归分析知识结构三种抽样方法的比较如下表:类别共同点相互联系适用范围各自特点简单随机抽样(1)抽样过程中每个个体被抽到的机会相等(2)抽样过程都是不放回的抽样总体中的个数较少从总体中逐个抽取系统抽样在起始部分抽样时采用简单随机抽样总体中的个数较多将总体均分成几部分,按事先确定的规则在各部分抽取分层抽样每层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成将总体分成几层,按一定的比例进行抽取1.

从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是

(

)

A.

1,2,3,4,5

B.

5,16,27,38,49

C.

2,4,6,8,10

D.

4,13,22,31,40

1.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A.1,2,3,4,5B.5,16,27,38,49C.2,4,6,8,10D.4,13,22,31,402.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师人.3.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法

C.系统抽样法,分层抽样法

D.简单随机抽样法,分层抽样法用样本估计总体:一般分成两种(1)是用样本的频率分布估计总体的分布;(2)是用样本的数字特征(如平均数、标准差等)

估计总体的数字特征.所谓第一种就是利用样本的频率分布表和频率分布直方图对总体情况作出估计,有时也利用频率分布折线图和茎叶图对总体估计第二种就是为了从整体上更好地把握总体的规律,可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体的数字特征作出估计几个概念:众数:样本数据中出现最多的数据;中位数:把样本数据分成相同数目的两部分,其中一部分比这个数小,另一部分比这个数大的那个数;

中位数是一组数据的中间水平。平均数:所有样本数据的平均值,用表示;标准差:是反映样本数据分散程度大小的最常用统计量,其计算公式如下:方差:标准差的平方注意:中位数和众数不同,中位数不一定在这组数据中。而众数必定在该组数据)例:2、3、4、5、6、7中位数:中间的两个数相加后除2=(4+5)/2=4.5.下列说法错误的是()A在统计里,把所需考察对象的全体叫作总体B一组数据的平均数一定大于这组数据中的每个数据C平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D一组数据的方差越大,说明这组数据的波动越大从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:甲897976101086乙10986879788(1)计算甲、乙两人射箭命中环数的平均数和标准差;(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛4.频率分布表(1)含义:表示样本数据分布规律的表格.(2)作法:第一步,求极差.第二步,决定组距与组数(强调取整).第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.5.频率分布直方图(1)含义:表示样本数据分布规律的图形.(2)作法:第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.

A.32B.0.2C.40D.0.25

7.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10个小长方形的面积的和的14,且样本容量为160,则中间一组有频数为()6.频率分布折线图在频率分布直方图中,依次连接各小长方形上端中点得到的一条折线,称为频率分布折线图.00.10.20.30.40.50.60.511.522.533.544.5画出频率分布折线图.频率/组距月均用水量/t(取组距中点,并连线)0.080.160.30.440.50.30.10.080.047.总体密度曲线当总体中的个体数很多时,随着样本容量的增加,所分的组数增多,组距减少,相应的频率分布折线图越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.月均用水量/t频率组距0ab8.茎叶图作法:第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,将最小的茎和最大的茎之间的数按大小次序排成一列,写在左(右)侧;第三步,将各个数据的叶按大小次序写在茎右(左)侧.例:甲乙两人比赛得分记录如下:甲:13,51,23,8,26,38,16,33,14,28,39乙:49,24,12,31,50,31,44,36,15,37,25,36,39用茎叶图表示两人成绩,说明哪一个成绩好.甲 乙0123452,55,41,6,1,6,7,94,9084,6,33,6,83,8,91叶 茎叶茎叶图(一种被用来表示数据的图)

(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。茎叶图的特征:9.众数、中位数和平均数众数:频率分布直方图最高矩形下端中点的横坐标.中位数:频率分布直方图面积平分线的横坐标.平均数:频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积的总和.10.标准差11.相关关系

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.12.散点图

在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.

如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.13.回归直线14.求回归直线方程的步骤:例1.某工厂人员及周工资构成如下:人员经理管理人员高级技工工人学徒合计周工资2200250220200100人数16510123合计22001500110020001006900(1)指出这个问题中周工资的众数、中位数、平均数.(2)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?200,220,300.(2)因平均数为300,由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平.例2.以往招生统计显示,某所大学录取的新生高考总分的中位数基本稳定在550分,若某同学今年高考得了520分,他想报考这所大学还需收集哪些信息?解析:(1)查往年录取的新生的平均分数.若平均数小于中位数很多,说明最低录取线较低,可以报考.(2)查往年录取的新生高考总分的标准差.若标准差较大,说明新生的录取分数较分散,最低录取线可能较低,可以考虑报考.第三章概率概率知识点:1、频率与概率的意义3、古典概型4、几何概型2、事件的关系和运算1、频率本身是随机的,在试验前不能确定。做同样次数的重复试验得到事件的频率会不同。2、概率是一个确定的数,与每次试验无关。是用来度量事件发生可能性大小的量。3、频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。频率与概率的意义:事件的关系和运算:(2)相等关系:(3)并事件(和事件):(4)交事件(积事件):(5)互斥事件:(6)互为对立事件:(1)包含关系:且是必然事件A=B互斥事件与对立事件的联系与区别:1、两事件对立,必定互斥,但互斥未必对立2、互斥的概念适用于多个事件,但对立概念只适用于两个事件3、两个事件互斥只表明这两个事件不能同时发生,即至多只能发生一个,但可以都不发生;而两事件对立则表明它们有且只有一个发生概率的基本性质(1)0≤P(A)≤1(2)当事件A、B互斥时,(3)当事件A、B对立时,(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论