下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市南高崖中学2023年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地摆放在书架的同一层上,则同一科目的书都不相邻的概率是
(
)A. B. C. D.参考答案:B2.复数=(
)
A.2+i
B.2-i
C.1+2i
D.1-2i参考答案:C3.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为A;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为B.则完成A、B这两项调查宜采用的抽样方法依次是(
)
(A)分层抽样法,系统抽样法(B)分层抽样法,简单随机抽样法
(C)系统抽样法,分层抽样法
(D)简单随机抽样法,分层抽样法参考答案:B4.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.参考答案:A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.5.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A.y与x具有正线性相关关系B.回归直线过样本的中心点C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg参考答案:D【考点】BK:线性回归方程.【分析】根据回归分析与线性回归方程的意义,对选项中的命题进行分析、判断正误即可.【解答】解:由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,A正确;由线性回归方程必过样本中心点,因此B正确;由线性回归方程中系数的意义知,x每增加1cm,其体重约增加0.85kg,C正确;当某女生的身高为160cm时,其体重估计值是50.29kg,而不是具体值,因此D错误.故选:D.【点评】本题考查了回归分析与线性回归方程的应用问题,是基础题目.6.设,,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件参考答案:A【分析】由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【详解】因为,所以,,,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,由,,,判断出中至少有一个大于1,是解题的关键.7.定义行列式运算,若将函数的图象向左平移m(m>0)个单位长度后,所得图象对应的函数为偶函数,则m的最小值是(
)
A.
B,
C.
D.参考答案:C8.设抛物线的顶点在原点,准线方程为,则抛物线的方程是(
)
(A)
(B)
(C)
(D)参考答案:B9.向量a=(2x,1,3),b=(1,-2y,9),若a与b共线,则()参考答案:C10.某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为()A.8万元 B.10万元 C.12万元 D.15万参考答案:C【考点】频率分布直方图.【分析】由频率分布直方图得0.4÷0.1=4,也就是11时至12时的销售额为9时至10时的销售额的4倍.【解答】解:由频率分布直方图得0.4÷0.1=4∴11时至12时的销售额为3×4=12故选C二、填空题:本大题共7小题,每小题4分,共28分11.设,则=
.参考答案:12.在平面直角坐标系中,为原点,,动点满足,则的最大值是
.参考答案:13.命题“,”的否定是
.
参考答案:,14.函数g(x)=ax3+2(1-a)x2-3ax(a<0)在区间(-∞,)内单调递减,则a的取值范围是_______.参考答案:∵g′(x)=3ax2+4(1-a)x-3a,g(x)在递减,则g′(x)在上小于等于0,即:3ax2+4(1-a)x-3a≤0,当a<0,g′(x)是一个开口向下的抛物线,
设g′(x)与x轴的左右两交点为A(x1,0),B(x2,0)
由韦达定理,知x1+x2=x1x2=-1,
解得则在A左边和B右边的部分g′(x)≤0又知g(x)在递减,
即g′(x)在上小于等于0,
∴x1≥即:解得,
∴a的取值范围是.故答案为点睛:本题考察了函数的单调性,导数的应用,易错点是结合二次函数的图像可知二次方程对应的小根应大于等于,因为所以小根应改为而不是15.若抛物线的焦点与双曲线的一个焦点相同,则该抛物线的方程为_______参考答案:16.已知椭圆,则椭圆的焦点坐标是*
参考答案:17.经过点E(–,0)的直线l,交抛物线C:y2=2px(p>0)于A、B两点,l的倾斜角为α,则α的取值范围是
;F为抛物线的焦点,△ABF的面积为
(用p,α表示)。参考答案:(0,)∪(,π),三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,一个铝合金窗分为上、下两栏,四周框架(阴影部分)的材料为铝合金,宽均为6cm,上栏与下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800cm2,设该铝合金窗的宽和高分别为cm和cm,铝合金窗的透光部分的面积为cm2.(I)试用表示;(Ⅱ)若要使最大,则铝合金窗的宽和高分别为多少?参考答案:略19.在各项为正的数列{an}中,数列的前n项和Sn满足Sn=.(1)求a1,a2,a3;(2)由(1)猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.参考答案:略20.(本小题满分12分)已知函数,在区间上有最大值4,最小值1,设函数.(1)求、的值及函数的解析式;(2)若不等式在时恒成立,求实数的取值范围;(3)如果关于的方程有三个相异的实数根,求实数的取值范围.参考答案:(1),由题意得:得或
得(舍),,(2)不等式,即,设,,,或.时满足题设.21.设函数f(x)=ex﹣a(x+1)(e是自然对数的底数,e=2.71828…).(1)若f'(0)=0,求实数a的值,并求函数f(x)的单调区间;(2)设g(x)=f(x)+,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲线y=g(x)上任意两点,若对任意的a≤﹣1,恒有g(x2)﹣g(x1)>m(x2﹣x1)成立,求实数m的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)求出函数f(x)的导数,根据f'(0)=0,求出a的值,从而求出函数的单调区间即可;(2)得到g(x2)﹣mx2>g(x1)﹣mx1,令函数F(x)=g(x)﹣mx,则F(x)在R上单调递增,根据函数的单调性求出m的范围即可.【解答】解:(1)∵f(x)=ex﹣a(x+1),∴f′(x)=ex﹣a,∵f′(0)=1﹣a=0,∴a=1,∴f′(x)=ex﹣1,由f′(x)=ex﹣1>0,得x>0;由由f′(x)=ex﹣1<0,得x<0,∴函数f(x)的单调增区间为(0,+∞),单调减区间为(﹣∞,0).(2)由>m,(x1<x2)变形得:g(x2)﹣mx2>g(x1)﹣mx1,令函数F(x)=g(x)﹣mx,则F(x)在R上单调递增,∴F′(x)=g′(x)﹣m≥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业加工承揽合同
- 2024西瓜种植收购合同范文
- 工程劳务承包合同的简化版本
- 成人高等教育联合举办协议
- 2024工程机械租赁合同范本
- 租房协议书示范
- 2024标识标牌合同
- 信息技术服务合作契约样本
- 2024财产信托合同范文
- 2024年人力资源派遣协议范本
- 文艺复兴经典名著选读 知到智慧树网课答案
- 2024年北京出版集团有限责任公司招聘笔试冲刺题(带答案解析)
- 2024年成都电子信息产业功能区建设发展有限责任公司招聘笔试冲刺题(带答案解析)
- 2022-2023学年福建省厦门一中九年级(上)期中物理试卷
- 足球球性球感练习教案
- 锂离子电池制造中的安全问题与防范措施
- 中小学数学教学有效衔接教育探索
- MOOC 现代邮政英语(English for Modern Postal Service)-南京邮电大学 中国大学慕课答案
- 胃结石的护理查房
- 中高考姓名代码
- 年产3GWh钠离子电池项目可行性研究报告模板-备案拿地
评论
0/150
提交评论