版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市育红中学2022-2023学年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1}参考答案:B【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:1<x<3,即B={x|1<x<3},∵A={x|x>2},∴A∩B={x|2<x<3},故选:B.2.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有
(
)
A.15种
B.12种
C.9种
D.6种参考答案:答案:D3.已知双曲线的右焦点也是抛物线的焦点,与的一个交点为,若轴,则双曲线的离心率为(
)A.
B.
C.
D.参考答案:A试题分析:由题意可知,所以,即,所以,解之得,故选A.考点:1.双曲线的标准方程与几何性质;2.抛物线的标准方程与几何性质.4.在各项均为正数的等比数列{a}中,若aa=9,则loga+loga+…+loga=()(A)12
(B)2+log5
(C)8
(D)10
参考答案:D5.6.抛物线的焦点到双曲线的渐近线的距离是(
)(A)
(B)
(C)
(D)参考答案:B6.使成立的一个变化区间为A.
B.
C.
D.参考答案:答案:A7.若某市8所中学参加中学生比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(
)A.91
5.5 B.91
5 C.92
5.5 D.92
5参考答案:A【考点】极差、方差与标准差;众数、中位数、平均数.【专题】概率与统计.【分析】由茎叶图得到这组数据为:87,88,90,91,92,93,93,94,由此能求出这组数据的平均数和方差.【解答】解:由茎叶图得到这组数据为:87,88,90,91,92,93,93,94,∴这组数据的平均数为:=(87+88+90+91+92+93+93+94)=91,这组数据的方差为:S2=[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=5.5.故选:A.【点评】本题考查一组数据的平均数和方差的求法,是基础题,解题时要认真审题,注意茎叶图性质的合理运用.8.已知,下列程序框图设计的是求的值,在“?”中应填的执行语句是(
)A.
B.
C.
D.参考答案:A9.在等差数列中,已知,则等于(
)A.40
B.42
C.43
D.45参考答案:B10.某几何体的三视图(单位:cm)若图所示,则该几何体的体积是(
)A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B,F为C的焦点.若|FA|=2|FB|,则k=.参考答案:【考点】抛物线的简单性质.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点,求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为(1,2)∴k==,故答案为:【点评】本题考查了抛物线的简单性质,考查学生分析解决问题的能力,属于中档题.12.设等差数列的前项和为,,,则的最大值是
.参考答案:答案:4.解析:由题意,,即,,.这是加了包装的线性规划,有意思.建立平面直角坐标系,画出可行域(图略),画出目标函数即直线,由图知,当直线过可行域内点时截距最大,此时目标函数取最大值.本题明为数列,实为线性规划,着力考查了转化化归和数形结合思想.掌握线性规划问题"画-移-求-答"四步曲,理解线性规划解题程序的实质是根本.这是本题的命题意图.因约束条件只有两个,本题也可走不等式路线.设,由解得,∴,由不等式的性质得:
,即,的最大值是4.从解题效率来看,不等式路线为佳,尽管命题者的意图为线性规划路线.本题解题策略的选择至关重要.点评:(1)二项式定理,直线和圆的方程,正四棱柱,数列几个知识点均为前两年未考点.(2)无多选压轴题.无开放性压轴题.易入手,考不好考生只能怪自已.题出得基础,出得好,出得妙.尤其是第16题.13.若实数a,b,c成等差数列,点P(-1,0)在动直线ax+by+c=0上的射影为M,点N(3,3),则线段MN长度的最大值是__________.参考答案:5+14.函数,若,且,则的最小值为
▲
.参考答案:0、2略15.在矩形中,,,是上一点,且,则的值为
参考答案:216.在二项式的展开式中,常数项是__________,系数为有理数的项的个数是________.参考答案:280
5
【分析】根据二项式展开式的通项即可求解.【详解】展开式的通项,若为常数项则即,,即常数项为280;由通项可知系数为有理项即为有理数,即k可取,共有5项所以答案分别为280,5【点睛】本题考查二项式的展开式,比较基础.17.已知复数z=a(1+i)﹣2为纯虚数,则实数a=.参考答案:2【考点】复数代数形式的乘除运算.【分析】利用纯虚数的定义即可得出.【解答】解:复数z=a(1+i)﹣2=a﹣2+ai为纯虚数,∴a﹣2=0,a≠0,则实数a=2故答案为:2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数()的最小正周期为.(Ⅰ)求函数的单调增区间;(Ⅱ)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.求在区间上零点的个数.参考答案:解:(Ⅰ)由题意得
由周期为,得.
得
由正弦函数的单调增区间得,得所以函数的单调增区间.(Ⅱ)将函数的图象向左平移个单位,再向上平移1个单位,得到的图象,所以
令,得:或
所以函数在每个周期上恰有两个零点,
恰为个周期,故在上有个零点略19.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG?EF=CE?GD;(2)求证:.参考答案:考点:圆的切线的性质定理的证明;与圆有关的比例线段.专题:证明题;压轴题.分析:(1)要证明AG?EF=CE?GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG?GF,结合(1)的结论,不难得到要证明的结论.解答: 证明:(1)连接AB,AC,∵AD为⊙M的直径,∴∠ABD=90°,∴AC为⊙O的直径,∴∠CEF=∠AGD,∵∠DFG=∠CFE,∴∠ECF=∠GDF,∵G为弧BD中点,∴∠DAG=∠GDF,∵∠ECB=∠BAG,∴∠DAG=∠ECF,∴△CEF∽△AGD,∴,∴AG?EF=CE?GD
(2)由(1)知∠DAG=∠GDF,∠G=∠G,∴△DFG∽△AGD,∴DG2=AG?GF,由(1)知,∴.点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.20.(本题12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.参考答案:(1)设至少有一组研发成功的事件为事件A且事件B为事件A的对立事件,则事件B为一种新产品都没有成功,因为甲,乙成功的概率分别为则再根据对立事件概率之间的公式可得P(A)=1-P(B)=,所以至少一种产品研发成功的概率为.(2)由题可设该企业可获得利润为ξ,则ξ的取值有0,120+0,100+0,120+100,即ξ=0,120,100,220,由独立试验的概率计算公式可得:所以ξ的分布列如下:则数学期望32+20+88=140.21.在△ABC中,内角A,B,C的对边分别为a,b,c,若A=,b=2,△ABC的面积为.(1)求a和c的值;(2)求sin(2B﹣)的值.参考答案:【考点】HT:三角形中的几何计算.【分析】(1)根据三角形的面积公式和余弦定理即可求出,(2)根据正弦定理和二倍角公式和同角的三角函数的关系,以及两角差的正弦公式即可求出.【解答】解:(1)∵△ABC的面积为,∴,∴c=3由余弦定理a2=b2+c2﹣2bccosA∴(2)由正弦定理∴∵a>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版影视制作与发行合同
- 美业门店培训课程设计
- 英语加国学课程设计理念
- 感觉统合课程设计大班
- 油画初学者 课程设计
- 2024政法干警考试复习资料
- 系统动力学课程设计总结
- 深圳市政府投资交通建设项目管理模式-第二册
- 大班社会签到课程设计
- 2024年羽绒家纺销售岗位职责(共8篇)
- 2023年香港华夏杯六年级竞赛初赛数学试卷
- 高中数学放缩法
- 上海市闵行区2024-2025学年八年级(上)期末物理试卷(解析版)
- 2024年国考行测真题-言语理解与表达真题及完整答案1套
- 人教版三年级上册数学期末测试卷可打印
- 医疗高级职称评审论文答辩
- 设计服务保障措施方案
- 软件测试方案模板(完整版)
- 建筑幕墙工程(铝板、玻璃、石材)监理实施细则(全面版)
- 基于课程标准的学生创新素养培育的学科教学改进研究课题申报评审书
- 批判性思维技能测试题及答案
评论
0/150
提交评论