版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省晋中市小韩中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知上存在关于对称的相异两点A、B,则(
)A.
B.
C.
D.参考答案:C2.某商场为了了解毛衣的月销售量(件)与月平均气温之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温171382月销售量(件)24334055由表中数据算出线性回归方程中的=,气象部门预测下个月的平均气温约为,据此估计该商场下个月毛衣销售量约为(
)件.A.46
B.40
C.38
D.58参考答案:A3.执行下面的程序框图,如果输入的n是4,则输出的p是()A.8
B.5C.3
D.2参考答案:C4.将函数图象上的所有点向左平移个单位长度,则所得图象的函数解析式是(
)A.
B.
C.
D.参考答案:A5.
(
)A.
B.
C.
D.
参考答案:B6.在正方体ABCD﹣A1B1C1D1中,点E,F满足=3,=3,则BE与DF所成角的正弦值为()A. B. C. D.参考答案:A【考点】异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出BE与DF所成角的正弦值.【解答】解:如图,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为4,∵点E,F满足=3,=3,∴B(4,4,0),E(4,3,4),D(0,0,0),F(0,1,4),=(0,﹣1,4),=(0,1,4),设异面直线BE与DF所成角为θ,则cosθ===.sinθ==,∴BE与DF所成角的正弦值为.故选:A.【点评】本题考查异面直线所成角的正弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.7.已知集合,则A∩B=(
)A.[-2,3] B.[-1,2] C.[-2,1] D.[1,2]参考答案:B【分析】解绝对值不等式求得集合,解一元二次不等式求得集合,由此求得两个集合的交集.【详解】由解得,由解得,故,故选B.【点睛】本小题主要考查绝对值不等式的解法,考查一元二次不等式的解法,考查两个集合的交集运算,属于基础题.8.下列说法正确的是()①||﹣|=0
②|+=14③|﹣|=6
④|﹣|=18.A.①表示无轨迹②的轨迹是射线B.②的轨迹是椭圆③的轨迹是双曲线C.①的轨迹是射线④的轨迹是直线D.②、④均表示无轨迹参考答案:B【考点】曲线与方程.【分析】利用几何意义,结合椭圆、双曲线的定义,即可得出结论.【解答】解:﹣,表示(x,y),到(﹣4,0),(4,0)距离的差;+,表示(x,y),到(﹣4,0),(4,0)距离的和,结合选项,可知②的轨迹是椭圆③的轨迹是双曲线,故选B.【点评】本题考查椭圆、双曲线的定义,考查学生分析解决问题的能力,正确理解椭圆、双曲线的定义是关键.9.由2开始的偶数数列,按下列方法分组:(2),(4,6),(8,10,12)…,第n组有n个数,则第n组的首项是(
)
B.
C.
D.参考答案:D略10.已知命题,命题,则是的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知动直线l的方程:cosα?(x﹣2)+sinα?(y+1)=1(α∈R),给出如下结论:①动直线l恒过某一定点;②存在不同的实数α1,α2,使相应的直线l1,l2平行;③坐标平面上至少存在两个点都不在动直线l上;④动直线l可表示坐标平面上除x=2,y=﹣1之外的所有直线;⑤动直线l可表示坐标平面上的所有直线;其中正确结论的序号是
.参考答案:②③【考点】命题的真假判断与应用.【分析】①,圆(x﹣2)2+(y+1)2=1上任一点P(2+cosα,﹣1+sinα),则点P处的切线为cosα?(x﹣2)+sinα?(y+1)=1(α∈R);②,当≠0时,直线的斜率k=﹣,存在不同的实数α1,α1,使cotα1=cotα1,相应的直线l1,l2平行;③,cosα?(x﹣2)+sinα?(y+1)=1?,所有使的点(x,y)都不在其上;对于④,⑤由③可判定.【解答】解:对于①,圆(x﹣2)2+(y+1)2=1上任一点P(2+cosα,﹣1+sinα),则点P处的切线为cosα?(x﹣2)+sinα?(y+1)=1(α∈R),直线不会过一定点,故错;对于②,当≠0时,直线的斜率k=﹣,存在不同的实数α1,α1,使cotα1=cotα1,相应的直线l1,l2平行,故正确;对于③,cosα?(x﹣2)+sinα?(y+1)=1?,所有使的点(x,y)都不在其上,故正确;对于④,⑤由③可得错.故答案为:②③【点评】本题考查了命题真假的判定,涉及到直线方程的知识,属于基础题.12.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽一只,设抽取次品数为,则=____________.参考答案:3抽取次品数满足超几何分布:,故,,,其期望,故.
13.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是.其中正确结论的序号是(写出所有正确结论的序号).参考答案:略14.展开式中的常数项有
参考答案:解析:的通项为其中的通项为
,所以通项为,令得,当时,,得常数为;当时,,得常数为;当时,,得常数为;15.椭圆的准线方程为___________.参考答案:16.在正三棱锥S﹣ABC中,侧棱SC⊥侧面SAB,侧棱SC=,则此正三棱锥的外接球的表面积为.参考答案:36π【考点】球内接多面体.【分析】由题意推出SC⊥平面SAB,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.【解答】解:∵三棱锥S﹣ABC正棱锥且侧棱SC⊥侧面SAB,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=2,∴R=3,∴S=4πR2=4π?(3)2=36π,故答案为:36π.17.设函数的导数为,则数列的前项和是______________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知P(﹣1,1),Q(2,4)是曲线y=x2上的两点.(1)求过点P,Q的曲线y=x2的切线方程;(2)求与直线PQ平行的曲线y=x2的切线方程.参考答案:【考点】利用导数研究曲线上某点切线方程.【分析】(1)先求导数y′=2x,从而得出y=x2在P,Q点处的导数,即求出过点P,Q的切线的斜率,由直线的点斜式方程便可写出切线方程;(2)可设切点为,从而得出切线的斜率为2x0,并可求出kPQ=1,从而根据条件2x0=1,这样即可求出x0,求出切点的坐标,根据直线的点斜式方程便可得出切线的方程.【解答】解:(1)y′=2x;∴过点P,Q的切线斜率分别为﹣2,4;∴过点P的切线方程为:y﹣1=﹣2(x+1);即y=﹣2x﹣1;过点Q的切线方程为:y﹣4=4(x﹣2);即y=4x﹣4;(2)设切点为;;∵切线和直线PQ平行,且切线的斜率为2x0;∴2x0=1;∴;∴切点为;∴切线方程为;即.19.如图,在三棱柱中,侧棱底面,为的中点,
. (1)求证:平面;(2)若BC=3,
求二面角的正切值.参考答案:略20.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)频数(个)(1)用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?(2)在(1)中抽出的4个苹果中,任取2个,求重量在和中各有一个的概率;参考答案:21.(12分).求满足下列条件的曲线的标准方程:(1)椭圆的中心在原点,焦点,在轴上,离心率为.过的直线交于,两点,且的周长为16;(2)焦点在轴上,焦距为10且点在其渐近线上的双曲线方程.
参考答案:22.某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需的距离),无酒状态与酒后状态下的实验数据分别列于表1和表2.表1:停车距离d(米)(10,20](20,30](30,40](40,50](50,60]频数26402482表2:平均每毫升血液酒精含量x(毫克)1030507090平均停车距离y(米)3050607090请根据表1,表2回答以下问题.(1)根据表1估计驾驶员无酒状态下停车距离的平均数;(2)根据最小二乘法,由表2的数据计算y关于x的回归方程.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生共青团活动介绍
- 太阳能发电效益测算
- 总结者挑剔者控场者记录者无领导小组讨论测评常见的角
- 100以内加减法竖式计算单元作业试题大全附答案
- 需要性重要性创造性可行性合适性
- 《生理学感觉系统》课件
- 《入井安全须知》课件
- 一提供安全感
- f放射治疗总体概况
- 公司培训介绍
- 2024 ESC慢性冠脉综合征指南解读(全)
- 2024二十届三中全会知识竞赛题库及答案
- (高清版)JTG 5142-2019 公路沥青路面养护技术规范
- 物流运输项目 投标方案(适用烟草、煤炭、化肥、橡胶等运输项目)(技术方案)
- 电力企业合规培训课件
- 领导干部任前谈话记录表
- GB/T 10058-2009电梯技术条件
- 施工现场质量管理检查记录表【精选文档】
- 新版pep小学英语四上单词默写
- 期中考试班会PPT
- 送货单EXCEL模板
评论
0/150
提交评论