版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省吕梁市时代中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若向量,,满足,则x=(
)A.1 B.2 C.3 D.4参考答案:A【分析】根据向量的坐标运算,求得,再根据向量的数量积的坐标运算,即可求解,得到答案.【详解】由题意,向量,,,则向量,所以,解得,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.2.若不等式在t∈(0,2]上恒成立,则a的取值范围是()A.
B.
C.
D.参考答案:B3.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是()A. B. C. D.参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】根据三角函数的图象变换关系进行求解即可.【解答】解:将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin(),由=+kπ,即+2kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:D.【点评】本题主要考查三角函数的图象变换关系以及三角函数对称轴的计算,求出函数的解析式是解决本题的关键.4.函数的图象大致是
(A)
(B)
(C)
(D)参考答案:A5.已知一个高为3且其底面是有一个内角为60°的菱形的直四棱柱直立在水平桌面上,若该直四棱柱的正视图的最小面积为,则直四棱柱的体积为()A. B. C. D.参考答案:C【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】确定有一个内角为60°的菱形的高为,可得菱形的一条边长为,即可求出直四棱柱的体积.【解答】解:由直四棱柱的正视图的最小面积为,可得有一个内角为60°的菱形的高为,则菱形的一条边长为,∴底面的面积为=,∴直四棱柱的体积为=,故选:C.【点评】本题考查直四棱柱的体积,考查学生的计算能力,确定菱形的一条边长为是关键.6.设全集则上图中阴影部分表示的集合(
)A.
B.C.
D.参考答案:A7.如下图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则此几何体
的表面积为(
)
A.
B.
C.
D.参考答案:C如图所示,可将此几何体放入一个边长为2的正方体内,则四棱锥即
为所求,且,,可求得表面积为.8.某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图1所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为(
)A.6万元
B.8万元
C.10万元
D.12万元
参考答案:C略9.设全集,,,则(
)A. B. C. D.参考答案:C【分析】先化简集合A,B,再结合集合补集交集的定义进行求解即可.【详解】,,则或,则,故选:.10.某汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:
A型车
B型车出租天数34567车辆数330575出租天数34567车辆数101015105
根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系为(
)
A.
B. C.
D.无法判断参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.(坐标系与参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的极坐标方程为,它与曲线为参数)相交于A和B两点,则AB=
.参考答案:略12.从如图所示的由9个单位小方格组成的3×3方格表的16个顶点中任取三个顶点,则这三个点构成直角三角形的概率为 .参考答案:
13.直角坐标系中,圆C的参数议程是(
为参数),以原点为极点,x轴的正半轴为极轴建立坐标系,则圆心C的极坐标是
。参考答案:14.在△ABC中,若a=3,b=,∠A=,则∠C的大小为_________
参考答案:15.已知球O的表面积是36π,A,B是球面上的两点,∠AOB=60°,C时球面上的动点,则四面体OABC体积V的最大值为.参考答案:【考点】球的体积和表面积.【分析】球O的表面积为36π,可得半径为3,当CO垂直于面AOB时,三棱锥O﹣ABC的体积最大,即可求出三棱锥O﹣ABC的体积的最大值.【解答】解::球O的表面积为36π,半径为3,当CO垂直于面AOB时,三棱锥O﹣ABC的体积最大,此时VO﹣ABC=VC﹣AOB==故答案为:,16.已知复数满足=3,则复数的实部与虚部之和为__________.参考答案:略17.自治区教科院用分层抽样的方法,从某校600份文理科试卷中抽取部分试卷进行样本分析,其中抽取文科试卷若干份,每份文科试卷被抽到的概率为,则理科试卷共有
份.参考答案:450【考点】古典概型及其概率计算公式.【分析】利用分层抽样性质和概率性质求解.【解答】解:∵用分层抽样的方法,从某校600份文理科试卷中抽取部分试卷进行样本分析,其中抽取文科试卷若干份,每份文科试卷被抽到的概率为,∴文科试卷共有600×=150,∴理科试卷共有600﹣150=450份.故答案为:450.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知圆和直线.(1)求证:对总有两个不同的交点A、B;(2)求弦AB中点M的轨迹方程,并说明其轨迹是什么曲线?参考答案:1)圆心C(0,1),半径则圆心到直线l的距离(或此直线恒过一个定点,且这个定点在圆内。)2)19.已知椭圆C:+=1(a>b>0).(1)若椭圆的两个焦点与一个短轴顶点构成边长为2的正三角形,求椭圆的标准方程;(2)过右焦点(c,0)的直线l与椭圆C交于A、B两点,过点F作l的垂线,交直线x=于P点,若的最小值为,试求椭圆C率心率e的取值范围.参考答案:【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)由已知可得:2c=2,2a=4,b2=a2﹣c2,解得a,b即可.(2)设直线l的方程,A,B,P坐标,|PF|=.联立,化为:(b2m2+a2)y2+2mcb2y﹣b4=0.|AB|==.=≥.即可求得椭圆C率心率e的取值范围【解答】解:(1)由已知可得:2c=2,2a=4,b2=a2﹣c2,解得a=2,c=1,b2=3.∴椭圆的标准方程为=1.(2)设直线l的方程为:x=my+c,A(x1,y1),B(x2,y2).P()|PF|=.联立,化为:(b2m2+a2)y2+2mcb2y﹣b4=0.∴y1+y2=﹣,y1?y2=,∴|AB|==.∴=≥.令,?b2t2﹣2cbt+c2≥0,上式在t≥1时恒成立,∴椭圆C率心率e的取值范围为(0,1)20.选修4-4:坐标系与参数方程以平面直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为,若直线过点P,且倾斜角为,圆C以M为圆心,4为半径.(1)求直线的参数方程和圆C的极坐标方程;(2)试判定直线与圆C的位置关系.参考答案:解析:(1)直线的参数方程:(为参数),则(为参数),点的直角坐标为,圆方程,且,代入得圆极坐标方程;(2)直线的普通方程为,圆心到的距离为,∴直线与圆相离.
21.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,PC=PD=,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的性质.【分析】(Ⅰ)设AC与BD的交点为F,连结EF,推导出EF∥PC.由此能证明PC∥平面BED.(Ⅱ)取CD中点O,连结PO.推导出PO⊥CD,取AB中点G,连结OG,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角A﹣PC﹣B的余弦值.(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.利用向量法能求出在棱PC上存在点M,使得BM⊥AC.此时,=【解答】(共14分)证明:(Ⅰ)设AC与BD的交点为F,连结EF.因为ABCD为矩形,所以F为AC的中点.在△PAC中,由已知E为PA中点,所以EF∥PC.又EF?平面BFD,PC?平面BFD,所以PC∥平面BED.…(Ⅱ)取CD中点O,连结PO.因为△PCD是等腰三角形,O为CD的中点,所以PO⊥CD.又因为平面PCD⊥平面ABCD,PO?平面PCD,所以PO⊥平面ABCD.取AB中点G,连结OG,由题设知四边形ABCD为矩形,所以OF⊥CD.所以PO⊥OG.…如图建立空间直角坐标系O﹣xyz,则A(1,﹣1,0),C(0,1,0),P(0,0,1),D(0,﹣1,0),B(1,1,0),O(0,0,0),G(1,0,0).=(﹣1,2,0),=(0,1,﹣1).设平面PAC的法向量为=(x,y,z),则,令z=1,得=(2,1,1).平面PCD的法向量为=(1,0,0).设的夹角为α,所以cosα==.由图可知二面角A﹣PC﹣D为锐角,所以二面角A﹣PC﹣B的余弦值为.…(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.因此点M(0,λ,1﹣λ),=(﹣1,λ﹣1,1﹣λ),=(﹣1,2,0).由,得1+2(λ﹣1)=0,解得.因为∈[0,1],所以在棱PC上存在点M,使得BM⊥AC.此时,=.
…22.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(A+C).(Ⅰ)求角B的大小;(Ⅱ)求函数f(x)=2sin2x+sin(2x﹣B)(x∈R)的最大值.参考答案:【考点】正弦定理;三角函数的最值.【分析】(Ⅰ)由正弦定理和和差角的三角函数公式可得cosB,可得角B;(Ⅱ)由(Ⅰ)和三角函数公式化简可得f(x)=sin(2x﹣),易得函数最大值.【解答】解:(Ⅰ)∵在△ABC中bcosA=(2c+a)cos(A+C),∴由正弦定理可得sinBc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度网络安全风险评估与解决方案合同范本3篇
- 二零二五版股权激励合同:某上市公司对高级管理人员股权激励计划3篇
- 2025年度时尚服饰店开业活动承包合同3篇
- 2025年度高端不锈钢医疗器械制造委托合同3篇
- 二零二五版智能穿戴设备代加工合同范本2篇
- 二零二五年度环保型车间生产承包服务合同范本3篇
- 二零二五年高管子女教育援助与扶持合同3篇
- 2025年草场租赁与牧区基础设施建设合同3篇
- 二零二五版涵洞工程劳务分包单价及工期延误赔偿合同3篇
- 二零二五版财务报表编制会计劳动合同范本3篇
- GB/T 34241-2017卷式聚酰胺复合反渗透膜元件
- GB/T 12494-1990食品机械专用白油
- 运输供应商年度评价表
- 成熙高级英语听力脚本
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
- 商场装修改造施工组织设计
- 统编版一年级语文上册 第5单元教材解读 PPT
- 加减乘除混合运算600题直接打印
- ASCO7000系列GROUP5控制盘使用手册
评论
0/150
提交评论