版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年陕西省咸阳市武功县苏坊镇凤安中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.右图是函数的图像,它与轴有个不同的公共点.给出下列四个区间,不能用二分法求出函数在区间(
)上的零点。
A.
B.
C.
D.参考答案:B2.已知中,,,,那么角等于
A.
B.
C.
D.
参考答案:B略3.函数和都是减函数的区间是(
)A.
B.C.
D.参考答案:A4.若(R)是周期为2的偶函数,且当时,,则方程的实根个数是(
)A.1
B.2
C.3
D.4参考答案:D略5.下列四个函数:①;②;③;④.
其中值域为R的函数有(
).A.1个
B.2个
C.3个
D.4个
参考答案:B6.下列图形中,不能表示以x为自变量的函数图象的是()A. B. C. D.参考答案:B【考点】函数的概念及其构成要素.【分析】利用函数定义,根据x取值的任意性,以及y的唯一性分别进行判断.【解答】解:B中,当x>0时,y有两个值和x对应,不满足函数y的唯一性,A,C,D满足函数的定义,故选:B7.设集合,则为(
).
.
.
.参考答案:B8.有4个函数:①②③④,其中偶函数的个数是(A)(B)(C)(D)参考答案:C9.已知m,n为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是(
)A.②③ B.①③ C.②④ D.①④参考答案:B【分析】利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.10.设A={x|0≤x≤2},B={y|0≤y≤2},下列各图中能表示从集合A到集合B的映射是()A. B. C. D.参考答案:D【考点】映射.【分析】根据映射的定义中,A中任意元素(任意性)在B中都有唯一的元素(唯一性)与之对应,我们逐一分析四个答案中图象,并分析其是否满足映射的定义,即可得到答案.【解答】解:A答案中函数的定义域为{x|0<x≤2}≠A,故不满足映射定义中的任意性,故A错误;B答案中,函数的值域为{y|0≤y≤3}?B,故不满足映射定义中的任意性,故B错误;C答案中,当x∈{x|0<x<2}时,会有两个y值与其对应,不满足映射定义中的唯一性,故C错误;D答案满足映射的性质,且定义域为A,值域为B,故D正确;故选D二、填空题:本大题共7小题,每小题4分,共28分11.在等比数列{an}中,a1=1,a5=3,则a2a3a4的值为
.参考答案:3略12.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.参考答案:.试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.13.在平面直角坐标系xOy中,在x轴、y轴正方向上的投影分别是4、-3,则与同向的单位向量是__________.参考答案:【分析】根据题意得出,再利用单位向量的定义即可求解.【详解】由在轴、轴正方向上的投影分别是、,可得,所以与同向的单位向量为,故答案为:【点睛】本题考查了向量的坐标表示以及单位向量的定义,属于基础题.14.函数在上的所有零点之和等于
.
参考答案:815.函数的图像与直线的两个相邻交点的距离等于,则_______________.参考答案:2略16.给出下列四种说法:⑴函数与函数的定义域相同;⑵函数的值域相同;⑶函数均是奇函数;⑷函数上都是增函数。其中正确说法的序号是
。参考答案:(1)、(3)略17.数列{an}中,a1=1,an+1=an+2n(n∈N+),则它的通项公式为____________.参考答案:2n-1(n?N+)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.计算下列各式的值:(1)0.064﹣(﹣)0+160.75+0.01;(2).参考答案:【考点】根式与分数指数幂的互化及其化简运算;对数的运算性质.【分析】(1)自己利用指数的运算法则,求出表达式的值即可.(2)利用对数的运算法则求解即可.【解答】解:(1)原式===;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)原式===log39﹣9=2﹣9=﹣7.﹣﹣﹣﹣19.小明在数学课中学习了《解三角形》的内容后,欲测量河对岸的一个铁塔高AB(如图所示),他选择与塔底B在同一水平面内的两个测量点C和D,测得∠BCD=60°,∠BDC=45°,CD=30米,并在点C测得塔顶A的仰角为θ=30°.求:(1)sin∠DBC;(2)塔高AB(结果精确到0.01)(参考数据:≈1.73)参考答案:(1)由题意可知∠DBC=180°﹣60°﹣45°=75°,∴sin∠DBC=sin75°=sin(45°+30°)=×+=.(2)在△BCD中,由正弦定理得:,即,解得BC=(30﹣30)米.在Rt△ABC中,∵tanθ==,∴AB=BC=30﹣10≈12.7米.20.设有一条光线从P(﹣2,4)射出,并且经x轴上一点Q(2,0)反射(Ⅰ)求入射光线和反射光线所在的直线方程(分别记为l1,l2)(Ⅱ)设动直线l:x=my﹣2,当点M(0,﹣6)到l的距离最大时,求l,l1,l2所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.参考答案:【考点】直线与圆相交的性质;与直线关于点、直线对称的直线方程.【分析】(Ⅰ)求出直线斜率,即可求入射光线和反射光线所在的直线方程;(Ⅱ)l⊥MN时,M到l的距离最大,求出l的方程,再求出圆心与半径,即可求出圆的方程.【解答】解:(Ⅰ)∵kPQ=﹣,∴l1:y=﹣(x﹣2),∵l1,l2关于x轴对称,∴l2:y=(x﹣2);(Ⅱ)设M到直线l的距离为MH,∵l恒过点N(﹣2,0),∴MH=,∴NH=0时,MH最大,即l⊥MN时,M到l的距离最大,∵kMN=﹣,∴m=,∴l的方程为x=y﹣2,设所求方程为(x﹣2)2+(y﹣t)2=r2,∴r==,∴t=2(另一根舍去),∴所求方程为(x﹣2)2+(y﹣2)2=1.21.已知函数(1)求的定义域和值域;(2)若的值;(3)若曲线在点处的切线平行直线,求的值.参考答案:1)
由则
(2)∵∴
∵∴
∴(3)由题意得=∴
又∵
∴略22.设函数f(x)=,求使f(x)≥2的x的取值范围.参考答案:解析:令u=,y=f(x),则y=2为u的指数函数.
∴f(x)≥2≥2≥u≥①∴f(x)≥≥②
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年成都市房产交易合同
- 二零二四年车辆维护与清洁服务合同
- 2024年度企业并购协议书2篇
- 2024年度版权代理合同with标的:作家作品代理出版3篇
- 2024版科技企业孵化器投资股权合同3篇
- 电力工程劳务分包合同(2024年度)
- 二零二四年度融资合同:企业债券发行与购买协议
- 2024年度加工承揽合同质量担保
- 瓷砖施工环境保护2024年度合同
- 2024年度高速公路混凝土路面养护合同
- 新教材苏教版小学六年级音乐上册教案全册
- 运输行业安全风险管控
- 2024年贵州公安厅事业单位笔试真题
- 2024年足球课堂教学设计教案5篇
- 非连续性文本阅读之客观题3大陷阱-备战2024年中考语文考试易错题原卷版及解析版(原卷版+解析版)
- 养殖二代野猪的可行性方案
- MOOC 心理学与生活-华东师范大学 中国大学慕课答案
- SYT 6769.1-2010 非金属管道设计、施工及验收规范 第1部分:高压玻璃纤维管线管
- 房地产经纪指南:业务流程介绍
- 2020-2021学年赣州市章贡区九年级(上)期末数学试卷(含答案解析)
- 2022年4月自考00808商法试题及答案含解析
评论
0/150
提交评论