版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年陕西省汉中市略阳县金家河中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某学校为了制定节能减排的目标,调查了日用电量y(单位:千瓦时)与当天平均气温x(单位:℃),从中随机选取了4天的日用电量与当天平均气温,并制作了对照表:x171510-2y2434a64由表中数据的线性回归方程为,则a的值为(
)A.34
B.36
C.38
D.42参考答案:C2.已知圆的圆心到直线的值为(
)
A.—2或2
B.
C.0或2
D.—2或0参考答案:C3.若存在两个正实数x,y,使得等式3x+a(2y﹣4ex)(lny﹣lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(﹣∞,0) B. C. D.参考答案:D【考点】函数恒成立问题.【专题】函数思想;转化法;函数的性质及应用.【分析】根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.【解答】解:由3x+a(2y﹣4ex)(lny﹣lnx)=0得3x+2a(y﹣2ex)ln=0,即3+2a(﹣2e)ln=0,即设t=,则t>0,则条件等价为3+2a(t﹣2e)lnt=0,即(t﹣2e)lnt=﹣有解,设g(t)=(t﹣2e)lnt,g′(t)=lnt+1﹣为增函数,∵g′(e)=lne+1﹣=1+1﹣2=0,∴当t>e时,g′(t)>0,当0<t<e时,g′(t)<0,即当t=e时,函数g(t)取得极小值为:g(e)=(e﹣2e)lne=﹣e,即g(t)≥g(e)=﹣e,若(t﹣2e)lnt=﹣有解,则﹣≥﹣e,即≤e,则a<0或a≥,故选:D.【点评】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键.综合性较强.4.设双曲线的两焦点之间的距离为10,则双曲线的离心率为
()A. B. C. D.参考答案:C【分析】根据题意得出,再利用a,b,c的关系,离心率公式得解.【详解】因为双曲线两焦点之间的距离为10,所以,所以,所以.所以离心率.故选C.【点睛】本题考查双曲线基本量a,b,c的关系,离心率的公式,基础题.
5.已知集合,,则(
)A.
B.
C.
D.参考答案:【知识点】交、并、补集的混合运算.A1【答案解析】B解析:解:由集合A中的不等式x2﹣x﹣2<0,解得:﹣1<x<2,∴A=(﹣1,2),由集合B中的函数y=ln(1﹣|x|),得到1﹣|x|>0,即|x|<1,解得:﹣1<x<1,∴B=(﹣1,1),又全集R,∴CRB=(﹣∞,﹣1]∪[1,+∞),则A∩(CRB)=[1,2).故选B【思路点拨】求出集合A中不等式的解集,确定出集合A,求出集合B中函数的定义域,确定出集合B,找出R中不属于B的部分,求出B的补集,找出A与B补集的公共部分即可6.下列四个命题中,正确的有①两个变量间的相关系数越小,说明两变量间的线性相关程度越低;②命题:“,”的否定:“,”;③用相关指数来刻画回归效果,若越大,则说明模型的拟合效果越好;④若,,,则.A.①③④ B.①④ C.③④ D.②③参考答案:C7.如图,直二面角,,,,且,,,,,,则点P在平面内的轨迹是(
)A.圆的一部分 B.椭圆的一部分 C.一条直线 D.两条直线参考答案:A【分析】以所在直线为轴,的中垂线为轴,建立平面直角坐标系,写出点,的坐标,根据条件得出,设出点的坐标,利用两点间的距离公式及相似,即可得到轨迹方程,从而判断其轨迹.【详解】解:以所在直线为轴,的中垂线为轴,建立平面直角坐标系,设点,,,,,则,,,,,,,,即,整理得:,故点的轨迹是圆的一部分,故选.【点睛】本题以立体几何为载体考查轨迹问题,综合性强,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,同时考查了运算能力,转化能力,属于难题.8.以经过抛物线y2=8x的焦点与x轴垂直的弦(通经)的长为直径的圆方程是
(A)
(B)(C).
(D)参考答案:C略9.已知实数满足的最大值为(
)A.—3
B.—2
C.1
D.2
参考答案:C10.在正方体ABCD﹣A′B′C′D′中,若点P(异于点B)是棱上一点,则满足BP与AC′所成的角为45°的点P的个数为()A.0 B.3 C.4 D.6参考答案:B【考点】异面直线及其所成的角.【分析】通过建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P的个数.【解答】解:建立如图所示的空间直角坐标系,不妨设棱长AB=1,B(1,0,1),C(1,1,1).①在Rt△AA′C中,=,因此∠AA′C≠45°.同理A′B′,A′D′与A′C所成的角都为.故当点P位于(分别与上述棱平行)棱BB′,BA,BC上时,与A′C所成的角都为,不满足条件;②当点P位于棱AD上时,设P(0,y,1),(0≤y≤1),则,.若满足BP与AC′所成的角为45°,则==,化为y2+4y+1=0,无正数解,舍去;同理,当点P位于棱B′C上时,也不符合条件;③当点P位于棱A′D′上时,设P(0,y,0),(0≤y≤1),则,.若满足BP与AC'所成的角为45°,则==,化为y2+8y﹣2=0,∵0≤y≤1,解得,满足条件,此时点P.④同理可求得棱A′B′上一点P,棱A′A上一点P.而其它棱上没有满足条件的点P.综上可知:满足条件的点P有且只有3个.故选B.二、填空题:本大题共7小题,每小题4分,共28分11.已知圆G:x2+y2﹣2x﹣2y=0经过椭圆+=1(a>b>0)的右焦点及上顶点.过椭圆外一点M(m,0)(m>a),倾斜角为π的直线l交椭圆于C,D两点,若点N(3,0)在以线段CD为直径的圆E的外部,则m的取值范围是_________.参考答案:12.等差数列{an}满足,则a5=______;若,则n=______时,{an}的前n项和取得最大值.参考答案:4
6【分析】由等差数列的通项公式即可求出,再结合,得到,然后求出使时的正整数解即可。【详解】等差数列满足,所以,即,,所以,所以.令,解得,所以的前6项和取得最大值.故填:4,6.13.已知向量当三点共线时,实数的值为
▲
..参考答案:-2或1114.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且x∈[0,2]时,f(x)=log2(x+1),甲、乙、丙、丁四位同学有下列结论:甲:f(3)=1;乙:函数f(x)在[﹣6,﹣2]上是减函数;丙:函数f(x)关于直线x=4对称;丁:若m∈(0,1),则关于x的方程f(x)﹣m=0在[0,6]上所有根之和为4,其中结论正确的同学是
.参考答案:甲、乙、丁【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】本题利用函数的奇偶性和函数的解析式的关系,得到函数的对称关系,从而得到函数的中心对称和轴对称的性质,得到本题的相关结论.【解答】解:∵函数f(x)是定义在R上的奇函数,∴函数f(x)的图象关于原点对称,f(﹣x)=﹣f(x).∵函数f(x)满足f(x﹣4)=﹣f(x),∴f(x﹣8)=﹣f(x﹣4),∴f(x﹣8)=f(x),∴函数f(x)的周期为8.(1)命题甲∵f(x﹣4)=﹣f(x),∴f(3)=﹣f(﹣1)=f(1).∵x∈[0,2]时,f(x)=log2(x+1),∴f(1)=log2(1+1)=1,∴f(3)=1.∴命题甲正确;(2)命题乙∵当x∈[0,2]时,f(x)=log2(x+1),∴函数f(x)在[0,2]上单调递增.∵函数f(x)是定义在R上的奇函数,∴函数f(x)在[﹣2,0]上单调递增.∴函数f(x)在[﹣2,2]上单调递增.∵f(﹣2+x)=﹣f(2﹣x)=f[(2﹣x)﹣4]=f(﹣2﹣x),∴函数f(x)关于直线x=﹣2对称,∴函数f(x)在[﹣6,﹣2]上是减函数.∴命题乙正确.(3)命题丙∵f(4﹣x)=﹣f(x﹣4)=﹣f(x﹣4+8)=﹣f(4+x)∴由点(4﹣x,f(4﹣x))与点(4+x,f(4+x))关于(4,0)对称,知:函数f(x)关于点(4,0)中心对称.假设函数f(x)关于直线x=4对称,则函数f(x)=0,与题意不符,∴命题丙不正确.(4)命题丁∵当x∈[0,2]时,f(x)=log2(x+1),∴函数f(x)在[0,2]上单调递增,0≤f(x)≤log23.∵f(2﹣x)=﹣f(x﹣2)=f(x﹣2﹣4)=f(x﹣6)=f(2+x),∴函数f(x)的图象关于直线x=2对称.∴函数f(x)在[2,4]上单调递减,0≤f(x)≤log23.∵函数f(x)关于点(4,0)中心对称,∴当x∈[4,8]时,﹣log23≤f(x)≤0.∴当m∈(0,1)时,则关于x的方程f(x)﹣m=0在[0,6]上所有根有两个,且关于2对称,故x1+x2=4.∴命题丁正确.故答案为:甲、乙、丁.【点评】本题考查了函数的奇偶性、单调性、对称性与函数图象的关系,本题综合性强,难度较大,属于中档题.15.13设函数在内可导,且,则 参考答案:216.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为_______.参考答案:18
略17.正切曲线在点处的切线方程是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}的各项都为正数,且对任意n∈N*,a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列.(1)若a2=1,a5=3,求a1的值;(2)设a1<a2,求证:对任意n∈N*,且n≥2,都有<.参考答案:(1)解:因为a3,a4,a5成等差数列,设公差为d,则a3=3-2d,a4=3-d.因为a2,a3,a4成等比数列,所以a2==.因为a2=1,所以=1,解得d=2或d=.因为an>0,所以d=.因为a1,a2,a3成等差数列,所以a1=2a2-a3=2-(3-2d)=.(2)证明:(证法1)因为a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,所以2a2n=a2n-1+a2n+1,①=a2na2n+2.②
所以=a2n-2a2n,n≥2.③
所以+=2a2n.
因为an>0,
所以.(7分)
即数列{}是等差数列.
所以.
由a1,a2及a2n-1,a2n,a2n+1是等差数列,a2n,a2n+1,a2n+2是等比数列,可得.
所以所以.所以.从而所以.
①当n=2m,m∈N*时,
②当n=2m-1,m∈N*,m≥2时,综上,对一切n∈N*,且n≥2,都有.(证法2)①若n为奇数且n≥3时,则an,an+1,an+2成等差数列.因为所以.②若n为偶数且n≥2时,则an,an+1,an+2成等比数列,所以.由①②可知,对任意n≥2,n∈N*,.因为因为a1<a2,所以,即.综上,对一切n∈N*,且n≥2,都有.19.(本小题满分14分)已知函数在时取最大值2。是集合中的任意两个元素,的最小值为(1)求a、b的值;
(2)若的值。参考答案:20.设,函数。(Ⅰ)当时,求函数的递增区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围;(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中)使得点处的切线,则称直线存在“伴侣切线”.特别地,当时,又称直线存在“中值伴侣切线”.试问:当时,对于函数图象上不同两点、,直线是否存在“中值伴侣切线”?证明你的结论。参考答案:解:(Ⅰ)当时,,当时,,∴在上递增。………2分当时,由得:,∴在上递增。综上知,的递增区间为。………4分(Ⅱ)①当时,恒成立在上恒成立。设,则当时,得,当时,,递减;当时,,递增;∴最小值是,∴;………7分
②当时,,则恒成立,∴在上递增,∴的最小值是,∴恒成立………8分综上知,所求的取值范围是。………9分(Ⅲ)函数图象上的不同两点连线不存在“中值伴侣切线”。证明如下:当时,,。假设函数图象上的不同两点连线存在“中值伴侣切线”,则直线的斜率
,………11分令,则,上式化为:,即若令,由,在上单调递增,这表明在内不存在,使得
………13分综上所述,函数图象上的不同两点连线不存在“中值伴侣切线”。………14分略21.已知四棱锥中,平面,底面是边长为的菱形,,.(Ⅰ)求证:平面平面;(Ⅱ)设与交于点,为中点,若二面角的正切值为,求的值.参考答案:(Ⅰ)见解析;(Ⅱ)
【知识点】平面与平面垂直的判定;与二面角有关的立体几何综合题.G5G11(Ⅰ)因为PA⊥平面ABCD,所以PA⊥BD………………2分又ABCD为菱形,所以AC⊥BD,所以BD⊥平面PAC………………4分从而平面PBD⊥平面PAC.
……………6分(Ⅱ)方法1.过O作OH⊥PM交PM于H,连HD因为DO⊥平面PAC,可以推出DH⊥PM,所以∠OHD为O-PM-D的平面角………………8分又,且………………10分从而………………11分所以,即.
………12分法二:如图,以为原点,所在直线为轴,轴建立空间直角坐标系,则,,…………8分从而………………9分因为BD⊥平面PAC,所以平面PMO的一个法向量为.……10分
设平面PMD的法向量为,由得取,即……………11分设与的夹角为,则二面角大小与相等从而,得从而,即.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同印花税的税率
- 电工合同范本(2篇)
- 村医抽调卫生院值班合同(2篇)
- 南京空白就业协议书(2篇)
- 合伙人合同协议书范文(2篇)
- 二零二四年度设备租赁及运营管理合同
- 二零二四年度商务咨询合同终止协议
- 桥梁桩基工程劳务外包合同
- 常用分包合同模板
- 会议录音录像与剪辑制作协议
- 危大工程验收记录表(基坑工程)
- 工程停工申请表和停工报告
- 《一年级大个子二年级小个子-》指导课件
- 小学道德与法治 五年级上册 传统美德源远流长 天下兴亡 匹夫有责的爱国情怀 教学设计
- 学会学习 班会课件
- 日本侵华简史
- 某蔬菜大棚钢结构施工组织设计
- 企业管理基础完整版课件全套ppt最全电子教案整书教案教学设计教学教程
- 修井机电控系统系统操作手册范本
- 二年级上册美术教案-第16课 剪影丨浙美版
- 人教版八年级上册 Unit 1 Where did you go on vacation- Section A(1a-2d)说课稿
评论
0/150
提交评论