版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年辽宁省抚顺市清原满族自治县第二高级中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数在区间上单调递减,则的最大值是(
)A.
B.
C.
D.参考答案:D2.阅读右面的流程图,若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是:A.75、21、32
B.21、32、75C.32、21、75
D.75、32、21参考答案:D略3.设{an}是由正数组成的等比数列,且a5a6=81,log3a1+log3a2+…+log3a10的值是(
)A.5
B.10;
C.20
D.2或4参考答案:C略4.已知函数有两个极值点,则实数m的取值范围为(
)A. B. C. D.(0,+∞)参考答案:B【分析】函数定义域是R,函数有两个极值点,其导函数有两个不同的零点;将导函数分离参数m后构造出的关于x的新函数与关于m的函数有两个不同交点,借助函数单调性即可确定m的范围.【详解】函数的定义域为,.因为函数有两个极值点,所以有两个不同的零点,故关于的方程有两个不同的解,令,则,当时,,当时,,所以函数在区间上单调递增,在区间上单调递减,又当时,;当时,,且,故,所以,故选B.【点睛】本题考查了利用函数极值点性质求解参数范围,解题中用到了转化思想和分离参数的方法,对思维能力要求较高,属于中档题;解题的关键是通过分离参数的方法,将问题转化为函数交点个数的问题,再通过函数导数研究构造出的新函数的单调性确定参数的范围.5.设,则的值是
(
)
A.665
B.729
C.728
D.63参考答案:A6.复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i参考答案:C【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:===1+2i,故选:C.7.设a、b为正数,且a+b≤4,则下列各式中正确的一个是(
)A.
B.
C.
D.参考答案:B略8.若正方形ABCD的边长为1,则?等于()A. B.1 C. D.2参考答案:B【考点】平面向量数量积的运算.【分析】直接利用向量的数量积求解即可.【解答】解:正方形ABCD的边长为1,则?=||?||cos<,>==1.故选:B.9.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P是A1D1的中点,Q是A1B1上的任意一点,E、F是CD上的任意两点,且EF的长为定值.现有如下结论:①异面直线PQ与EF所成的角是定值;②点P到平面QEF的距离是定值;③直线PQ与平面PEF所成的角是定值;④三棱锥P-QEF的体积是定值;⑤二面角P-EF-Q的大小是定值.其中正确结论的个数是A.0
B.1
C.2
D.3参考答案:D略10.已知向量,,且与互相垂直,则的值是(
)A.
1
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.设等比数列的公比,前n项和为,则
.参考答案:1512.设曲线在点(1,-2)处的切线与直线垂直,则a=
;参考答案:-113.函数在上的最小值为则的取值范围为_____参考答案:略14.已知,若,则的最大值为
.参考答案:15.命题:对?x∈R,x3﹣x2+1≤0的否定是.参考答案:【考点】命题的否定.【分析】根据已知中的原命题,结合全称命题否定的方法,可得答案.【解答】解:命题:对?x∈R,x3﹣x2+1≤0的否定是,故答案为:16.
如图所示的流程图的输出结果为sum=132,则判断框中?处应填________.参考答案:1117.具有A,B,C三种性质的总体,其容量为63,将A,B,C三种性质的个体按1:2:4的比例进行分层调查,如果抽取的样本容量为21,则A,B,C三种元素分别抽取.参考答案:3,6,12【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义即可得到结论.【解答】解:∵抽取的样本容量为21,A,B,C三种性质的个体按1:2:4的比例进行分层调查,∴A,B,C三种元素分别抽取,,,故答案为:3,6,12【点评】本题主要考查分层抽样的求解,根据条件建立比例关系是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知向量,(1)求的最大值和最小值;(2)若,求k的取值范围。参考答案:(1)
(2)由19.(1)已知a=(2x-y+1,x+y-2),b=(2,-2),①当x、y为何值时,a与b共线?②是否存在实数x、y,使得a⊥b,且|a|=|b|?若存在,求出xy的值;若不存在,说明理由.(2)设n和m是两个单位向量,其夹角是60°,试求向量a=2m+n和b=-3m+2n的夹角.参考答案:(1)①∵a与b共线,∴存在非零实数λ使得a=λb,∴?②由a⊥b?(2x-y+1)×2+(x+y-2)×(-2)=0?x-2y+3=0.(*)由|a|=|b|?(2x-y+1)2+(x+y-2)2=8.(**)解(*)(**)得或∴xy=-1或xy=.(2)∵m·n=|m||n|cos60°=,∴|a|2=|2m+n|2=(2m+n)·(2m+n)=7,|b|2=|-3m+2n|2=7,∵a·b=(2m+n)·(-3m+2n)=-.设a与b的夹角为θ,∴cosθ==-,∴θ=120°.20.一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元.(为自然对数的底数,是一个常数.)(Ⅰ)写出月利润(万元)关于月产量(万件)的函数解析式;(Ⅱ)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件).(注:月利润=月销售收入+月国家补助-月总成本).参考答案:(Ⅰ);(Ⅱ)月生产量在万件时,该公司在生产这种小型产品中所获得的月利润最大值为,此时的月生产量值为(万件)【分析】试题分析:(Ⅰ)根据题设条件:月利润=月销售收入+月国家补助-月总成本,可得利润(万元)关于月产量(万件)的函数解析式;(Ⅱ)先求函数的导数,再利用导数的符号判断函数在的单调性并进一步据此求出其最大值及最大值点.试题解析:解:(Ⅰ)由于:月利润=月销售收入+月国家补助-月总成本,可得(Ⅱ)的定义域为,且列表如下:
+
-
增
极大值
减
由上表得:在定义域上的最大值为.且.即:月生产量在万件时,该公司在生产这种小型产品中所获得的月利润最大值为,此时的月生产量值为(万件).考点:1、用函数的思想优化生活中的实际问题;2、导数在研究函数性质中的应用.21.命题:关于的不等式对一切恒成立,命题:指数函数是增函数,若或为真、且为假,求实数的取值范围.参考答案:由或为真,且为假得与中有且只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国老年人口失能状况及变化分析
- 人脸识别的智能防疫系统设计
- 会计职业生涯规划
- Unit3 Listening 说课稿2024-2025学年外研版七年级英语上册
- 山东省聊城市阳谷县四校2024-2025学年七年级上学期1月期末水平调研道德与法治试题(含答案)
- 二零二五年度城市停车场施工廉政管理服务合同3篇
- 贵州商学院《软装设计》2023-2024学年第一学期期末试卷
- 信息技术《使用扫描仪》说课稿
- 2025版家庭亲子教育图书订阅服务合同范本3篇
- 二零二五年度家族企业股东股权继承转让协议3篇
- 安全经理述职报告
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题 附答案
- 建筑项目经理招聘面试题与参考回答(某大型集团公司)2024年
- 安保服务评分标准
- (高清版)DB34∕T 1337-2020 棉田全程安全除草技术规程
- 部编版小学语文二年级上册单元测试卷含答案(全册)
- 护理部年终总结
- 部编版三年级上册语文语文期末质量监测(含答题卡)
- KISSSOFT操作与齿轮设计培训教程
- 2024年第二季度粤港澳大湾区经济分析报告-PHBS
- 消防安全制度完整版
评论
0/150
提交评论