版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市沙市第六中学2021-2022学年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知△ABC中,AB=6,∠A=30°,∠B=120°,则△ABC的面积为()A.9 B.18
C.9
D.18参考答案:C2.已知,,则(
)A. B.C. D.参考答案:C【分析】利用对数函数和指数函数的单调性比较大小.【详解】因为0<a=<1,b=log2<0,c=>=1,所以c>a>b.【点睛】本题考查指数式、对数式的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数的单调性的合理运用3.当x在(-∞,+∞)上变化时,导函数的符号变化如表:x(-∞,1)1(1,4)4(4,+∞)-0+0-
则函数的图象的大致形状为(
)A. B.C. D.参考答案:C分析:根据上表中导函数的取值,得到函数的单调性,即可选出图象.详解:由上表可知,当时,,所以函数在单调递减;当时,,所以函数在单调递增,所以函数如选项C所示,故选C.点睛:本题主要考查了函数的导数与函数图象的关系,正确理解导函数与原函数的关系是解答的关键,着重考查了分析问题和解答问题的能力.
4.如图,在三棱锥A﹣BCD中,侧面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=4,该三棱锥三视图的正视图为()A. B. C. D.参考答案:C【考点】简单空间图形的三视图.【分析】由题意,三棱锥三视图的正视图为等腰三角形,设C在BD上的射影为E,求出CE,即可得出结论.【解答】解:由题意,三棱锥三视图的正视图为等腰三角形,△BCD中,BC⊥CD,BC=6,BD=4,∴CD=2,设C在BD上的射影为E,则12=CE,∴CE=,故选C.【点评】本题考查三视图,考查学生的计算能力,比较基础.5.已知PA⊥矩形ABCD所在平面,PA≠AD,M,N分别是AB,PC的中点,则MN垂直于()A.AD B.CD C.PC D.PD参考答案:B【考点】直线与平面垂直的性质.【分析】连结AC、取AC中点为O,连结NO、MO,可得CD⊥面MNO即可..【解答】解:连结AC、取AC中点为O,连结NO、MO,如图所示:∵N、O分别为PC、AC中点,∴NO∥PA,∵PA⊥面ABCD,∴NO⊥面ABCD,∴NO⊥CD.又∵M、O分别为AB、AC中点,∴MO⊥CD,∵NO∩MO=O,∴CD⊥面MNO,∴CD⊥MN.故选:B.【点评】本题考查了通过线面垂直判定线线垂直,属于基础题.6.若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y=2的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6) C.(4,6] D.[4,6]参考答案:A【考点】点到直线的距离公式.【分析】先利用点到直线的距离公式求出圆心到直线的距离,由题意得|5﹣r|<1,解此不等式求得半径r的取值范围.【解答】解:∵圆心P(3,﹣5)到直线4x﹣3y=2的距离等于=5,由|5﹣r|<1得
4<r<6,故选A.7.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a,b,若a<b,则必有()A.af(b)≤bf(a)
B.bf(a)≤af(b)
C.af(a)≤f(b)
D.bf(b)≤f(a)参考答案:A8.关于函数。下列说法中:①它的极大值为,极小值为;②当时,它的最大值为,最小值为;③它的单调减区间为[-2,2];④它在点处的切线方程为,其中正确的有()个A.1
B.2
C.3
D.4参考答案:D∵函数∴由,解得x>2或x<?2,此时函数单调递增,由,解得?2<x<2,此时函数单调递减,∴③正确;当x=?2时,函数f(x)取得极大值f(?2)=,当x=2时,函数f(x)取得极小值f(2)=,∴①结论正确;时,单调递增,它的最大值为,最小值为,∴②正确;∴它在点处的切线方程为,∴④正确,故选:D
9.在△中,若,则△是(
)A直角三角形B等边三角形
C钝角三角形
D等腰直角三角形.参考答案:B略10.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a元定期储蓄,若年利率为P,且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年5月10日将所有存款和利息全部取回,则可取回的钱的总数(元)为 (
) A. B. C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数。参考答案:12.不论k为何实数,直线与曲线恒有交点,则实数a的取值范围是
参考答案:
;13.函数y=的定义域为__________.参考答案:略14.已知线性回归直线的斜率的估计值是1.23,样本点的中心为,则线性回归方程为________________.参考答案:15.如图是某几何体的三视图,其中正视图、俯视图的长均为4,宽分别为2与4,侧视图是等腰三角形,则该几何体的表面积是
.参考答案:略16.经过点(-2,0),与平行的直线方程是
.参考答案:y=2x+417.函数,若恒成立,则实数a的取值范围是
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)如图,三棱柱中,,,。(1)证明:;(2)若,,求三棱柱的体积。参考答案:(1)取AB的中点0,连结,因为,所以,由于,所以,所以平面,所以(2)由(1)知O是AB中点,均为正三角形,所以,又,所以为直角三角形,从而,又,所以平面。故19.已知函数f(x)=x2+ax﹣lnx,a∈R(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e]时,函数g(x)的最小值是3?若存在,求出a的值,若不存在,说明理由(3)当x∈(0,e]时,求证:e2x2﹣x>(x+1)lnx.参考答案:【考点】二次函数的性质;函数恒成立问题.【分析】(1)先求出函数f(x)的导数,得到不等式组,解出a的范围即可;(2)假设存在实数a,求出函数g(x)的导数,通过讨论g(x)的单调性,求出函数的最小值,从而求出a的值;(3)令F(x)=e2x﹣lnx,令ω(x)=+,通过讨论它们的单调性得到e2x﹣lnx>+即可.【解答】解:(1)f′(x)=2x+a﹣=≤0在[1,2]上恒成立,令h(x)=2x2+ax﹣1,∴,解得:a≤﹣;(2)假设存在实数a,使得g(x)=f(x)﹣x2=ax﹣lnx,x∈(0,e]有最小值3,g′(x)=a﹣=,①0<<e,即a>e时,令g′(x)>0,解得:x>,令g′(x)<0,解得:0<x<,∴函数g(x)在(0,)递减,在(,e]递增,∴g(x)min=g()=1+lna=3,解得:a=e2,满足条件;②≥e,即a≤时,g′(x)<0,g(x)在(0,e]单调递减,∴g(x)min=g(e)=ae﹣1=3,解得:a=(舍去);综上,存在实数a=e2,使得x∈(0,e]时,函数g(x)有最小值3;(3)令F(x)=e2x﹣lnx,由(2)得:F(x)min=3,令ω(x)=+,ω′(x)=,当0<x≤e时,ω′(x)≥0,ω(x)在(0,e]递增,故e2x﹣lnx>+,即:e2x2﹣x>(x+1)lnx.20.正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年新版中国电池隔板项目可行性研究报告
- 2024-2030年新版中国柔性石墨复合板项目可行性研究报告
- 2024-2030年新版中国保洁用品项目可行性研究报告
- 2024-2030年撰写:中国金泉胃炎胶囊行业发展趋势及竞争调研分析报告
- 2024-2030年撰写:中国无隔板过滤器项目风险评估报告
- 2024-2030年撰写:中国信函分拣机项目风险评估报告
- 2024-2030年撰写:中国IP摄像机行业发展趋势及竞争调研分析报告
- 2024-2030年布洛芬胶囊公司技术改造及扩产项目可行性研究报告
- 2024-2030年寿棒公司技术改造及扩产项目可行性研究报告
- 2024-2030年国家甲级资质:中国剥胶机融资商业计划书
- 工商企业管理毕业论文范文(4篇)
- 2024年短剧出海白皮书-meta-202409
- 《12 玩也有学问》教学设计-2024-2025学年道德与法治一年级上册统编版
- 2025年考研政治政治理论时政热点知识测试题库及答案(共三套)
- 一年级体育下册 第三课 我与大自然教案
- GA/T 2134-2024法庭科学有损FLASH存储设备数据恢复取证检验方法
- DLT5461-2013 火力发电厂施工图设计文件深度规定(第1-16部分)
- 辅警签合同范本
- DL∕T 516-2017 电力调度自动化运行管理规程
- 2024-2025学年广西南宁市小学五年级数学上册期末检查试题及答案
- 2024年湖北高考化学真题试题(原卷版+含解析)
评论
0/150
提交评论