版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年河南省平顶山市连疙瘩中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数为偶函数且在上为增函数的是(
)
A.
B.
C.
D.参考答案:B略2.已知函数=(a-x)|3a-x|,a是常数,且a>0,下列结论正确的是(
)A.当x=2a时,有最小值0
B.当x=3a时,有最大值0C.无最大值且无最小值
D.有最小值,但无最大值参考答案:C3.已知在△ABC中,,且,则的值为(
)A. B. C. D.参考答案:C【分析】先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.4.若函数,则f(-2)的值等于(
)A、B、C、D、2参考答案:A5.函数/f(x)=()x+3x的零点所在的区间是()A.(﹣2,﹣1) B.(0,1) C.(﹣1,0) D.(1,2)参考答案:C【考点】函数零点的判定定理.【分析】直接利用零点判定定理判定求解即可.【解答】解:函数f(x)=()x+3x,可得f(﹣2)=<0,f(﹣1)=<0,f(0)=1>0,f(1)>0,故选:C.6.已知函数,且,则实数的值为(
)A.-1
B.1
C.-1或1
D.-1或-3参考答案:C当时,由得,符合要求;当时,得,即的值为-1或1,故答案为C.
7.△ABC中,D在AC上,,P是BD上的点,,则m的值(
)A.
B.
C.
D.参考答案:A由题意得:则故选
8.若函数的一个正数的零点附近的函数值用二分法计算,其参考数据如下:,那么方程的一个近似根(精确到0.1)为
A、1.2
B、1.3
C、1.4
D、1.5参考答案:C略9.函数的值域是
A.B.C.D.4.如图1所示,是全集,是的子集,则阴影部分所表示的集合是(
)A.
A∩B
B.B∩AC.
D.A∩B
参考答案:A略10.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是(
)A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知一个扇形的周长为,圆心角为,则此扇形的面积为_________________.参考答案:略12.已知锐角三角形的边长分别为2、3、x,则x的取值范围是
_______________参考答案:<x<略13.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足4bsinA=a,若a,b,c成等差数列,且公差大于0,则cosA﹣cosC的值为. 参考答案:【考点】正弦定理. 【分析】4bsinA=a,由正弦定理可得:4sinBsinA=sinA,解得sinB.由a,b,c成等差数列,且公差大于0,可得2b=a+c,A<B<C.B为锐角,cosB=. 可得sinA+sinC=2sinB.设cosA﹣cosC=m>0,平方相加化简即可得出. 【解答】解:在△ABC中,∵4bsinA=a,由正弦定理可得:4sinBsinA=sinA,sinA≠0,解得sinB=. ∵a,b,c成等差数列,且公差大于0, ∴2b=a+c,A<B<C. ∴B为锐角,cosB==. ∴sinA+sinC=2sinB=. 设cosA﹣cosC=m>0, 平方相加可得:2﹣2cos(A+C)=, ∴2+2cosB=, ∴m2=, 解得m=. 故答案为:. 【点评】本题考查了正弦定理、等差数列的性质、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题. 14.已知数列{cn}的通项是cn=,则数列{cn}中的正整数项有____项。A.1
B.2
C.3
D.4
参考答案:
D15.设,函数在区间上的最大值和最小值的差为,则
.参考答案:416.函数y=ax﹣2+5过定点
.参考答案:(2,6)【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】根据指数函数的性质即可确定函数过定点.【解答】解:∵函数f(x)=ax过定点(0,1),∴当x﹣2=0时,x=2,∴此时y=ax﹣2+5=1+5=6,故y=ax﹣2+5过定点(2,6).故答案为:(2,6)【点评】本题主要考查指数函数的图象和性质,比较基础.17.已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着,三棱柱的侧面绕行两周到达的最短路线的长为__________.参考答案:13略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)已知函数,且(1)求m的值;
(2)判断在上的单调性,并给予证明;(3)求函数在区间上的最值.参考答案:(1)由得:,即:,解得:;……2分(2)函数在上为减函数。…3分证明:设,则;…6分∵
∴,即,即,∴在上为减函数。…8分(3)由(1)知:函数,其定义域为。…………9分∴,即函数为奇函数。…………12分由(2)知:在上为减函数,则函数在区间上为减函数。∴当时,取得最大值,最大值为;当时,取得最小值,最小值为。…………14分19.已知函数f(x)=2cosxsin(x+)﹣sin2x+sinxcosx(1)求函数f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时相应的x的值;(3)若当x∈[,]时,f(x)的反函数为f﹣1(x),求f﹣﹣1(1)的值.参考答案:【考点】GL:三角函数中的恒等变换应用;4R:反函数;H1:三角函数的周期性及其求法.【分析】(1)利用和差公式、三角函数的周期性即可得出.(2)利用三角函数的单调性最值即可得出;(3)利用互为反函数的性质即可得出.【解答】解:(1)f(x)=2cosxsin(x+)﹣sin2x+sinxcosx=2cosx(sinxcos+cosxsin)﹣sin2x+sinxcosx=2sinxcosx+cos2x=2sin(2x+)∴f(x)的最小正周期T=π(2)当2x+=2kπ﹣,即x=kπ﹣(k∈Z)时,f(x)取得最小值﹣2.(3)令2sin(2x+)=1,又x∈[],∴2x+∈[,],∴2x+=,则x=,故f﹣﹣1(1)=.20.已知=(cos,sin),,且(I)求的最值;(II)是否存在k的值使?参考答案:【考点】平面向量数量积的运算;两角和与差的余弦函数.【专题】平面向量及应用.【分析】(I)由数量积的定义可得=cosθ﹣,下面换元后由函数的最值可得;(II)假设存在k的值满足题设,即,然后由三角函数的值域解关于k的不等式组可得k的范围.【解答】解:(I)由已知得:∴==2cosθ∴==cosθ﹣令∴cosθ﹣=t﹣,(t﹣)′=1+>0∴t﹣为增函数,其最大值为,最小值为﹣∴的最大值为,最小值为﹣(II)假设存在k的值满足题设,即∵,∴cos2θ=∵,∴≤cos2θ≤1
∴﹣∴2﹣<k≤2+或k=﹣1故存在k的值使【点评】本题为向量的综合应用,涉及向量的模长和导数法求最值,属中档题.21.(本小题满分12分)已知直线:,(不同时为0),:,(1)若且,求实数的值;(2)当且时,求直线与之间的距离.参考答案:(1)当时,:,由知,…………4分解得;……………6分(2)当时,:,当时,有…………8分解得,
…
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度培训班业务转让协议典范
- 2024年化工厂房租赁协议格式
- 《Flash CS6动画制作案例教程》教学课件 008
- 2024年限定区域房地产销售代理协议
- 小孩带到工厂免责协议书
- 2024年出租车承包服务协议
- 2024年化鱼苗销售协议模板
- 2024年度业务处理外包公司协议典范
- 二手车交易协议2024年样式
- 2024酒店客房预订及服务协议
- 零星维修工程施工组织设计
- 危险预知训练教材(KYT)
- ISO9001体系文件与IRIS标准条款对应表
- 汉语教师志愿者培训大纲
- SPC培训资料_2
- 压力表使用警示标识
- 小学英语课堂教学策略与方法探讨
- 2019年重庆普通高中会考通用技术真题及答案
- DB44 T 552-2008 林业生态 术语
- 天秤座小奏鸣曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他谱)
- 三国志11全人物信息(五维、特技、生卒年等)
评论
0/150
提交评论