版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十六章动量守恒定律4碰撞1.两个球沿直线相向运动,碰撞后两球都静止.则可以推断()A.碰撞前两个球的动量一定相等B.两个球的质量一定相等C.碰撞前两个球的速度一定相等D.碰撞前两个球的动量大小相等,方向相反解析:两球碰撞过程动量守恒,由于碰撞后两球都静止,总动量为零,故碰撞前两个球的动量大小相等,方向相反,A错误,D正确;两球的质量是否相等不确定,故碰撞前两个球的速度是否相等也不确定,B、C错误.答案:D2.(多选)矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射穿一半厚度,如图所示,上述两种情况相比较()A.子弹对滑块做功一样多B.子弹对滑块做功不一样多C.系统产生的热量一样多D.系统产生的热量不一样多解析:由于都没有射出滑块,因此根据动量守恒,两种情况滑块最后的速度是一样的,即子弹对滑块做功一样多,再根据能量守恒,损失的机械能也一样多,故系统产生的热量一样多,选项A、C正确.答案:AC3.质量相等的三个物块在一光滑水平面上排成一直线,且彼此隔开了一定的距离,如图所示.具有动能E0的第1个物块向右运动,依次与其余两个静止物块发生碰撞,最后这三个物块粘在一起,这个整体的动能为()A.E0\f(2E0,3)\f(E0,3)\f(E0,9)解析:碰撞中动量守恒mv0=3mv1,得v1=eq\f(v0,3),①E0=eq\f(1,2)mveq\o\al(2,0),②E′k=eq\f(1,2)×3mveq\o\al(2,1).③由①②③得E′k=eq\f(1,2)×3meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v0,3)))eq\s\up12(2)=eq\f(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)mveq\o\al(2,0)))=eq\f(E0,3),故C正确.答案:C4.如图所示,木块A质量mA=1kg,足够长的木板B质量mB=4kg,质量为mC=4kg的木块C置于木板B上右侧,都处于静止状态,水平面光滑,B、C之间有摩擦.现使A以v0=12m/s的初速度向右运动,与B(1)B运动过程中速度的最大值;(2)C运动过程中速度的最大值;(3)整个过程中系统损失的机械能为多少.解析:(1)A与B碰后瞬间,B速度最大.由A、B系统动量守恒(取向右为正方向)有:mAv0+0=-mAvA+mBvB代入数据,得vB=4m(2)B与C共速后,C速度最大,由B、C系统动量守恒,有mBvB+0=(mB+mC)vC,代入数据,得vC=2m(3)ΔE损=eq\f(mAveq\o\al(2,0),2)-eq\f(mAveq\o\al(2,A),2)-eq\f((mB+mC)veq\o\al(2,C),2)=48J.答案:(1)4m/s(2)2m/s1.如图所示,木块A和B质量均为2kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时A.4JB.8JC.16JD.32J解析:A与B碰撞过程动量守恒,有mAvA=(mA+mB)vAB,所以vAB=eq\f(vA,2)=2m/s.当弹簧被压缩到最短时,A、B的动能完全转化成弹簧的弹性势能,所以Ep=eq\f(1,2)(mA+mB)veq\o\al(2,AB)=8J.答案:B2.在光滑的水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1小球以速度v0射向它们,如图所示.设碰撞中不损失机械能,则碰后三个小球的速度可能值是()A.v1=v2=v3=eq\f(1,\r(3))v0 B.v1=0,v2=v3=eq\f(1,\r(2))v0C.v1=0,v2=v3=eq\f(1,2)v0 D.v1=v2=0,v3=v0解析:两个质量相等的小球发生弹性正碰,碰撞过程中动量守恒,动能守恒,碰撞后将交换速度,故D项正确.答案:D3.冰壶运动深受观众喜爱,图1为2023年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图中的哪幅图()图1图2ABCD解析:两球碰撞过程动量守恒,两球发生正碰,由动量守恒定律可知,碰撞前后系统动量不变,两冰壶的动量方向即速度方向不会偏离甲原来的方向,由图示可知,A图示情况是不可能的,故A错误;如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,最终两冰壶的位置如图B所示,故B正确;两冰壶碰撞后,甲的速度不可能大于乙的速度,碰后乙在前,甲在后,如图C所示是不可能的,故C错误;碰撞过程机械能不可能增大,两冰壶质量相等,碰撞后甲的速度不可能大于乙的速度,碰撞后甲的位移不可能大于乙的位移,故D错误;故选B.答案:B4.在光滑水平面上,一质量为m,速度大小为v的A球与质量为2m静止的B球碰撞后,A球的速度方向与碰撞前相反,则碰撞后BA.B.C.D.解析:A、B两球在水平方向上合外力为零,A球和B球碰撞的过程中动量守恒,设A、B两球碰撞后的速度分别为v1、v2,原来的运动方向为正方向,由动量守恒定律有:mv=mv1+2mv2.①假设碰后A球静止,即v1=0,可得v2=.由题意知球A被反弹,所以球B的速度有v2>.②A、B两球碰撞过程能量可能有损失,由能量关系有:eq\f(1,2)mv2≥eq\f(1,2)mveq\o\al(2,1)+eq\f(1,2)mveq\o\al(2,2).③①③两式联立得:v2≤eq\f(2,3)v.④由②④两式可得:<v2≤eq\f(2,3)v,符合条件的只有,所以选项A正确,B、C、D错误.答案:A5.(多选)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为()\f(1,2)mv2 \f(1,2)eq\f(mM,m+M)v2\f(1,2)NμmgL D.NμmgL解析:根据动量守恒,小物块和箱子的共同速度v′=eq\f(mv,M+m),损失的动能ΔEk=eq\f(1,2)mv2-eq\f(1,2)(M+m)v′2=eq\f(1,2)eq\f(mM,m+M)v2,所以B正确;根据能量守恒,损失的动能等于因摩擦产生的热量,而计算热量的方法是摩擦力乘以相对位移,所以ΔEk=fNL=NμmgL,可见D正确.答案:BDB级提能力6.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=12kg·m/s、pB=13kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpA.ΔpA=-3kg·m/s、ΔpB=3B.ΔpA=3kg·m/s、ΔpB=-3C.ΔpA=-24kg·m/s、ΔpB=24D.ΔpA=24kg·m/s、ΔpB=-24解析:对于碰撞问题要遵循三个规律:动量守恒定律、碰后系统的机械能不增加和碰撞过程要符合实际情况.本题属于追及碰撞,碰前,后面运动小球的速度一定要大于前面运动小球的速度(否则无法实现碰撞),碰后,前面小球的动量增大,后面小球的动量减小,减小量等于增大量,所以ΔpA<0,ΔpB>0,并且ΔpA=-ΔpB,据此可排除选项B、D;若ΔpA=-24kg·m/s、ΔpB=24kg·m/s,碰后两球的动量分别为p′A=-12kg·m/s、p′B=37kg·m/s,根据关系式Ek=eq\f(p2,2m)可知,A小球的质量和动量大小不变,动能不变,而B小球的质量不变,但动量增大,所以B小球的动能增大,这样系统的机械能比碰前增大了,选项C可以排除;经检验,选项A满足碰撞所遵循的三个原则,本题答案为答案:A7.如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为mA=2kg、mB=1kg、mC=2kg.开始时C静止,A、B一起以v0=5m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A解析:因碰撞时间极短,A与C碰撞过程动量守恒,设碰撞后瞬间A的速度大小为vA,C的速度大小为vC,以向右为正方向,由动量守恒定律得:mAv0=mAvA+mCvC,①A与B在摩擦力作用下达到共同速度,设共同速度为vAB,由动量守恒定律得:mAvA+mBv0=(mA+mB)vAB.②A、B达到共同速度后恰好不再与C碰撞,应满足:vAB=vC.③联立①②③式解得:vA=2m答案:2m8.如图所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C后恰好能到达C板的右端.已知A、B的质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:(1)A物体的最终速度;(2)A物体与木板C上表面间的动摩擦因数.解析:(1)设A、B的质量为m,则C的质量为2m,B、C碰撞过程中动量守恒,令B、C碰后的共同速度为v1,以B的初速度方向为正方向,由动量守恒定律得:mv0=3mv1,解得:v1=eq\f(v0,3),B、C共速后A以v0的速度滑上C,A滑上C后,B、C脱离A、C相互作用过程中动量守恒,设最终A、C的共同速度v2,以向右为正方向,由动量守恒定律得:mv0+2mv1=3mv2,解得v2=eq\f(5v0,9).(2)在A、C相互作用过程中,由能量守恒定律,得fL=eq\f(1,2)mveq\o\al(2,0)+eq\f(1,2)·2mveq\o\al(2,1)-eq\f(1,2)·3mveq\o\al(2,2),又f=μmg,解得μ=eq\f(4veq\o\al(2,0),27gL).答案:(1)eq\f(5v0,9)(2)eq\f(4veq\o\al(2,0),27gL)9.如图所示,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0向B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中:(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.解析:(1)从A压缩弹簧到A与B具有相同速度v1时,对A、B与弹簧组成的系统,由动量守恒定律得:mv0=2mv1.①此时B与C发生完全非弹性碰撞,设碰撞后的瞬时速度为v2,损失的机械能为ΔE,对B、C组成的系统,由动量守恒和能量守恒定律得:mv1=2mv2,②eq\f(1,2)mveq\o\al(2,1)=eq\f(1,2)×2mveq\o\al(2,2)+ΔE.③联立①②③式得:ΔE=eq\f(1,16)mveq\o\al(2,0).④(2)由②式可知v2<v1,A将继续压缩弹簧,直至A、B、C三者速度相同,设此速度为v3,此时弹簧被压缩至最短,其弹性势能为Ep.由动量守恒和能量守恒定律得:mv1+2mv2=3mv3,⑤eq\f(1,2)mveq\o\al(2,0)=ΔE+Ep+eq\f(1,2)×3mveq\o\al(2,3).⑥联立④⑤⑥式得:Ep=eq\f(13,48)mveq\o\al(2,0).答案:(1)eq\f(1,16)mveq\o\al(2,0)(2)eq\f(13,48)mveq\o\al(2,0)10.如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m,且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短.碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能Ep.解析:(1)P1、P2碰撞过程,由动量守恒定律:mv0=2mv1.①解得:v1=eq\f(v0,2),方向水平向右②对P1、P2、P系统,由动量守恒定律:mv0+2mv0=4mv2.③解得:v2=eq\f(3,4)v0,方向水平向右.④(2)当弹簧压缩至最大时,P1、P2、P三者具有共同速度v2,由动量守恒定律:mv0+2mv0=4mv2.⑤对系统由能量守恒定律:2μmg×2(L+x)=eq\f(1,2)×2mveq\o\al(2,0)+eq\f(1,2)×2mveq\o\al(2,1)-eq\f(1,2)×4mveq
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年八年级统编版语文寒假预习 第05讲 《庄子》二则
- 【全程复习方略】2020年数学文(广西用)课时作业:第六章-第四节含绝对值的不等式
- 【2021届备考】2020全国名校物理试题分类解析汇编(11月第二期)D5-万有引力与天体运动
- 【创新设计】2021高考英语(四川专用)二轮复习-第4部分-阅读理解解答技巧-专题1-
- 《精准医疗》课件
- 2021杭州市高考英语阅读理解、完形填空小练(2)答案(四月)
- 【2021届备考】2020全国名校化学试题分类解析汇编(11月第二期):N-单元物质结构与性质
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- 【2021届备考】2020全国名校物理试题分类解析汇编(11月第二期)L2-法拉第电磁感应定律
- M2工艺部周工作总结Week
- 《混凝土的检测》课件
- 卫生健康系统2024年安全生产和消防工作要点
- CNC数控编程述职报告
- 生产车间环境改善方案
- 2024年高考物理真题分类汇编(全一本附答案)
- 2024-2025年上海中考英语真题及答案解析
- 新疆喀什地区巴楚县2023-2024学年九年级上学期1月期末化学试题
- 供应商可持续发展计划
- 《吉利集团财务共享中心的优化研究》11000字
- 生姜的产地分布
- 普通高中学业水平合格性考试(会考)语文试题(附答案)
评论
0/150
提交评论