高中数学北师大版2第一章推理与证明 第1章3反证法_第1页
高中数学北师大版2第一章推理与证明 第1章3反证法_第2页
高中数学北师大版2第一章推理与证明 第1章3反证法_第3页
高中数学北师大版2第一章推理与证明 第1章3反证法_第4页
高中数学北师大版2第一章推理与证明 第1章3反证法_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§3反证法1.了解间接证明的一种基本方法——反证法.2.理解反证法的概念及思考过程和特点.(难点)3.掌握反证法证题的基本步骤,会用反证法证明相关的数学问题.(重点、难点)[基础·初探]教材整理反证法阅读教材P13~P14“例3”以上内容,完成下列问题.1.反证法的定义在证明数学命题时,先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.2.反证法证明的思维过程反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导出逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p则q”的过程可以用以下框图表示:eq\x(\a\al(肯定条件p,,否定结论q))→eq\x(\a\al(导致逻,辑矛盾))→eq\x(\a\al(“p且﹁q”,为假))→eq\x(\a\al(“若p则q”,为真))判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理,也可以是一种演绎推理.()(3)反证法推出的矛盾不能与已知相矛盾.()【解析】(1)正确.反证法其实是证明其逆否命题成立,所以它属于间接问题的方法.(2)错误.反证法从证明过程看是一种严谨的演绎推理.(3)错误.反证法推出的矛盾可以与已知相矛盾.【答案】(1)√(2)×(3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]用反证法证明否定性命题等差数列{an}的前n项和为Sn,a1=1+eq\r(2),S3=9+3eq\r(2).(1)求数列{an}的通项an与前n项和Sn;(2)设bn=eq\f(Sn,n)(n∈N+),求证:数列{bn}中任意不同的三项都不可能成为等比数列.【精彩点拨】第(1)问应用an=a1+(n-1)d和Sn=na1+eq\f(1,2)n(n-1)d两式求解.第(2)问先假设存在三项bp,bq,br成等比数列,再用反证法证明.【自主解答】(1)设等差数列{an}的公差为d,由已知得eq\b\lc\{(\a\vs4\al\co1(a1=\r(2)+1,,3a1+3d=9+3\r(2),))∴d=2,故an=2n-1+eq\r(2),Sn=n(n+eq\r(2)).(2)证明:由(1)得bn=eq\f(Sn,n)=n+eq\r(2).假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则beq\o\al(2,q)=bpbr,即(q+eq\r(2))2=(p+eq\r(2))(r+eq\r(2)),∴(q2-pr)+(2q-p-r)eq\r(2)=0.∵p,q,r∈N+,∴eq\b\lc\{(\a\vs4\al\co1(q2-pr=0,,2q-p-r=0,))∴eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(p+r,2)))eq\s\up8(2)=pr,(p-r)2=0,∴p=r,这与p≠r矛盾.所以数列{bn}中任意不同的三项都不可能成为等比数列.1.当结论中含有“不”“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适合应用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.2.反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.3.常见否定词语的否定形式如下表所示:否定词语否定词语的否定形式没有有不大于大于不等于等于不存在存在[再练一题]1.已知方程f(x)=ax+eq\f(x-2,x+1)(a>1),证明:方程f(x)=0没有负数根.【证明】假设x0是方程f(x)=0的负数根,则x0<0,x0≠-1且ax0+eq\f(x0-2,x0+1)=0,所以ax0=-eq\f(x0-2,x0+1).又当x0<0时,0<ax0<1,故0<-eq\f(x0-2,x0+1)<1,即0<-1+eq\f(3,x0+1)<1,1<eq\f(3,x0+1)<2,解得eq\f(1,2)<x0<2.这与x0<0矛盾,所以假设不成立,故方程f(x)=0没有负数根.用反证法证明“至多”“至少”问题已知x,y,z均大于零,求证:x+eq\f(4,y),y+eq\f(4,z),z+eq\f(4,x)这三个数中至少有一个不小于4.【精彩点拨】本题中含有“至少”,不宜直接证明,故可采用反证法证明.【自主解答】假设x+eq\f(4,y),y+eq\f(4,z),z+eq\f(4,x)都小于4,即x+eq\f(4,y)<4,y+eq\f(4,z)<4,z+eq\f(4,x)<4,于是得eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(4,y)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(4,z)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(z+\f(4,x)))<12,而eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(4,y)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(4,z)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(z+\f(4,x)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(4,x)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(4,y)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(z+\f(4,z)))≥2eq\r(x·\f(4,x))+2eq\r(y·\f(4,y))+2eq\r(z·\f(4,z))=12,这与eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(4,y)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(y+\f(4,z)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(z+\f(4,x)))<12矛盾,因此假设错误,即x+eq\f(4,y),y+eq\f(4,z),z+eq\f(4,x)中至少有一个不小于4.1.用反证法证明“至少”“至多”型命题,可减少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什么,避免出现错误.2.用反证法证明“至多”“至少”问题时常见的“结论词”与“反设词”如下:结论词反设词结论词反设词至少有一个一个也没有对所有x成立存在某个x0不成立至多有一个至少有两个对任意x不成立存在某个x0成立至少有n个至多有n-1个p或q﹁p且﹁q至多有n个至少有n+1个p且q﹁p或﹁q[再练一题]2.若x>0,y>0,且x+y>2,求证:eq\f(1+y,x)与eq\f(1+x,y)至少有一个小于2.【导学号:94210018】【证明】假设eq\f(1+y,x)与eq\f(1+x,y)都不小于2,即eq\f(1+y,x)≥2,eq\f(1+x,y)≥2.∵x>0,y>0,∴1+y≥2x,1+x≥2y,两式相加得2+(x+y)≥2(x+y),∴x+y≤2,这与已知中x+y>2矛盾,∴假设不成立,原命题成立.故eq\f(1+y,x)与eq\f(1+x,y)至少有一个小于2.[探究共研型]用反证法证明“唯一性”命题探究1用反证法证明数学命题的步骤是什么?【提示】(1)反设:假设命题的结论不成立,即假定原结论的反面为真.(2)归谬:从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果.(3)存真:由矛盾的结果断定反设不真,从而肯定原结论成立.探究2如何证明两条相交直线有且只有一个交点?【提示】假设两条直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B的直线就有两条,这与“经过两点有且只有一条直线”相矛盾.所以两条相交直线有且只有一个交点.已知一点A和平面α.求证:经过点A只能有一条直线和平面α垂直.【精彩点拨】【自主解答】根据点A和平面α的位置关系,分两种情况证明.(1)如图(1),点A在平面α内,假设经过点A至少有平面α的两条垂线AB,AC,那么AB,AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于经过点A的一条直线a.因为AB⊥平面α,AC⊥平面α,aα,所以AB⊥a,AC⊥a,在平面β内经过点A有两条直线都和直线a垂直,这与平面几何中经过直线上一点只能有已知直线的一条垂线相矛盾.(1)(2)如图(2),点A在平面α外,假设经过点A至少有平面α的两条垂线AB和AC(B,C为垂足),那么AB,AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于直线BC,因为AB⊥平面α,AC⊥平面α,BCα,所以AB⊥BC,AC⊥BC.(2)在平面β内经过点A有两条直线都和BC垂直,这与平面几何中经过直线外一点只能有已知直线的一条垂线相矛盾.综上,经过一点A只能有一条直线和平面α垂直.证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.[再练一题]3.若函数f(x)在区间[a,b]上的图像连续不断,且f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【证明】由于f(x)在[a,b]上的图像连续不断,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f(x)在(a,b)内至少存在一个零点,设零点为m,则f(m)=0,假设f(x)在(a,b)内还存在另一个零点n,即f(n)=0,则n≠m.若n>m,则f(n)>f(m),即0>0,矛盾;若n<m,则f(n)<f(m),即0<0,矛盾.因此假设不正确,即f(x)在(a,b)内有且只有一个零点.[构建·体系]1.应用反证法推出矛盾的推理过程中可作为条件使用的是()①结论的否定;②已知条件;③公理、定理、定义等;④原结论.A.①② B.②③C.①②③ D.①②④【解析】根据反证法的基本思想,应用反证法推出矛盾的推导过程中可把“结论的否定”“已知条件”“公理、定理、定义等”作为条件使用.【答案】C2.实数a,b,c不全为0等价于(),b,c均不为0,b,c中至多有一个为0,b,c中至少有一个为0,b,c中至少有一个不为0【解析】不全为0即至少有一个不为0,故选D.【答案】D3.命题“△ABC中,若A>B,则a>b”的结论的否定应该是()<b ≤b=b ≥b【解析】“大于”的否定是“不大于”,即“小于或等于”,故选B.【答案】B4.用反证法证明某命题时,对某结论:“自然数a,b,c中无偶数”,正确的假设为________.【导学号:94210019】【解析】a,b,c中无偶数,即a,b,c都是奇数,反设应是“a,b,c中至少有一个偶数”.【答案】a,b,c中至少有一个偶数5.若a,b,c互不相等,证明:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.【证明】假设三个方程中都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加得a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,(a-b)2+(b-c)2+(c-a)2≤0,∴a=b=c,这与a,b,c互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是()A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角【解析】“最多有一个”的反设是“至少有两个”,故选C.【答案】C2.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a,b∈Z,若a,b中至少有一个为奇数,则a+b是奇数【解析】a+b为奇数⇔a,b中有一个为奇数,另一个为偶数,故D错误.【答案】D3.“自然数a,b,c中恰有一个偶数”的否定正确的为(),b,c都是奇数,b,c都是偶数,b,c中至少有两个偶数,b,c中都是奇数或至少有两个偶数【解析】自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a,b,c中都是奇数或至少有两个偶数.【答案】D4.设x,y,z都是正实数,a=x+eq\f(1,y),b=y+eq\f(1,z),c=z+eq\f(1,x),则a,b,c三个数()【导学号:94210020】A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【解析】若a,b,c都小于2,则a+b+c<6,①而a+b+c=x+eq\f(1,x)+y+eq\f(1,y)+z+eq\f(1,z)≥6,②显然①②矛盾,所以C正确.【答案】C5.(2023·温州高二检测)用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为()A.①②③ B.①③②C.②③① D.③①②【解析】根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.【答案】D二、填空题6.(2023·南昌高二检测)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是__________________.【解析】“至少有一个”的否定是“没有一个”.【答案】任意多面体的面没有一个是三角形或四边形或五边形7.(2023·汕头高二检测)用反证法证明命题“如果a>b,那么eq\r(3,a)>eq\r(3,b)”时,假设的内容应是________.【解析】eq\r(3,a)与eq\r(3,b)的关系有三种情况:eq\r(3,a)>eq\r(3,b),eq\r(3,a)=eq\r(3,b)和eq\r(3,a)<eq\r(3,b),所以“eq\r(3,a)>eq\r(3,b)”的反设应为“eq\r(3,a)≤eq\r(3,b)”.【答案】eq\r(3,a)≤eq\r(3,b)8.(2023·石家庄高二检测)设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.其中能推出“a,b中至少有一个大于1”的条件是________(填序号).【解析】若a=eq\f(1,3),b=eq\f(2,3),则a+b=1,但a<1,b<1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.若a=-2,b=1,则a2+b2>2,故④不能推出.对于③,即a+b>2,则a,b中至少有一个大于1.反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.【答案】③三、解答题9.已知x∈R,a=x2+eq\f(1,2),b=2-x,c=x2-x+1,试证明:a,b,c至少有一个不小于1.【证明】假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3.而与a+b+c=2x2-2x+eq\f(1,2)+3=2eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))eq\s\up8(2)+3≥3矛盾,故假设不成立,即a,b,c至少有一个不小于1.10.已知三个正数a,b,c成等比数列,但不成等差数列,求证:eq\r(a),eq\r(b),eq\r(c)不成等差数列.【证明】假设eq\r(a),eq\r(b),eq\r(c)成等差数列,则eq\r(a)+eq\r(c)=2eq\r(b),两边同时平方得a+c+2eq\r(ac)=4b.把b2=ac代入a+c+2eq\r(ac)=4b,可得a+c=2b,即a,b,c成等差数列,这与a,b,c不成等差数列矛盾.所以eq\r(a),eq\r(b),eq\r(c)不成等差数列.[能力提升]1.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是()A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确【解析】用反证法证题时一定要将对立面找准.在①中应假设p+q>2,故①的假设是错误的,而②的假设是正确的.【答案】D2.已知命题“在△ABC中,A≠B.求证sinA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论