2023届广东省清远市英德市中考试题猜想数学试卷含解析及点睛_第1页
2023届广东省清远市英德市中考试题猜想数学试卷含解析及点睛_第2页
2023届广东省清远市英德市中考试题猜想数学试卷含解析及点睛_第3页
2023届广东省清远市英德市中考试题猜想数学试卷含解析及点睛_第4页
2023届广东省清远市英德市中考试题猜想数学试卷含解析及点睛_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1C.322.如图,是的直径,弦,,,则阴影部分的面积为()A.2π B.π C. D.3.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关4.函数y=中自变量x的取值范围是()A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<15.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.36.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a57.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次 B.能中奖两次C.至少能中奖一次 D.中奖次数不能确定9.的绝对值是()A.﹣4 B. C.4 D.0.410.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.二、填空题(共7小题,每小题3分,满分21分)11.计算:(π﹣3)0﹣2-1=_____.12.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.13.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A. B. C. D.14.在数轴上与所对应的点相距4个单位长度的点表示的数是______.15.若,则=.16.分解因式:_________.17.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.三、解答题(共7小题,满分69分)18.(10分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.19.(5分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.20.(8分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元.21.(10分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(10分)化简(),并说明原代数式的值能否等于-1.23.(12分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.24.(14分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.【详解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中点,∴CD=12AB=12∵E,F分别为AC,AD的中点,∴EF是△ACD的中位线.∴EF=12CD=12故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.2、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD⊥AB,∴(垂径定理),故即可得阴影部分的面积等于扇形OBD的面积,又∵∴(圆周角定理),∴OC=2,故S扇形OBD=即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.3、A【解析】【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,所以,y随x的增大而减小.因为,1<4,所以,a>b.故选A【点睛】本题考核知识点:一次函数性质.解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.4、A【解析】分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.详解:根据题意得到:,解得x≥-1且x≠1,故选A.点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.5、C【解析】

过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ,在和中≌AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.6、A【解析】

直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.7、D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.8、D【解析】

由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D.【点睛】解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件.9、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.10、D【解析】

根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.二、填空题(共7小题,每小题3分,满分21分)11、12【解析】

分别利用零指数幂a0=1(a≠0),负指数幂a-p=1a【详解】解:(π﹣3)0﹣2-1=1-12=1故答案为:12【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.12、107°【解析】

过C作d∥a,得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.【详解】过C作d∥a,∴a∥b,∴a∥b∥d,∵四边形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案为107°.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.13、C【解析】

分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=x当2<x≤3,s=1所以刚开始的时候为正比例函数s=x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态14、2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.15、1.【解析】试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.考点:二次根式有意义的条件.16、【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)17、65°或25°【解析】

首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=•(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共7小题,满分69分)18、(1)13;(2)1【解析】

(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【详解】(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,∴小明选择去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率==.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).【解析】

(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【详解】(1)如图1所示,△A1B1C1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.20、(1)该车间应安排4天加工童装,6天加工成人装;(2)36000元.【解析】

(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:,解得:,答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.21、(1)117;(2)答案见图;(3)B;(4)30.【解析】

(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×1340故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×440【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22、见解析【解析】

先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.【详解】原式=[===,若原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论