带电粒子在磁场中的临界问题_第1页
带电粒子在磁场中的临界问题_第2页
带电粒子在磁场中的临界问题_第3页
带电粒子在磁场中的临界问题_第4页
带电粒子在磁场中的临界问题_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

磁偏转与电偏转的区别

磁偏转电偏转受力特征v垂直B时,FB=qvB,v不垂直于B时,FB=qvBsinα,FB为变力,只改变v方向无论v是否与E垂直,FE=qE,FE为恒力运动规律圆周运动

T=,

R=类平抛运动vx=v0,vy=x=v0t,y=

偏转情况若没有磁场边界,粒子所能偏转的角度不受限制因做类平抛运动,在相等的时间内偏转的角度往往不等动能变化动能不变动能不断增大且增大得越来越快电场强度三个公式的区别:区别公式公式含义适用范围E=FqE=kQr2E=Ud是电场强度的定义式任意电场是真空中点电荷电场的场强计算公式真空中点电荷电场

是匀强电场的场强的计算公式匀强电场力的特点功和能的特点静电场大小:F=

方向:正电荷受力方向与场强方向

;负电荷受力方向与场强方向

电场力做功与路径

W=qU电场力做功改变电荷的磁场洛伦兹力F=

方向符合左手定则洛伦兹力不做功,不改变带电粒子的qE相同相反无关电势能动能qvBsinθ1.带电粒子在匀强电场、匀强磁场中可能的运动性质在场强为E的匀强电场中在磁感应强度为B的匀强磁场中初速度为零做初速度为零的匀加速直线运动保持静止初速度平行场线做匀变速直线运动做匀速直线运动初速度垂直场线做匀变速曲线运动(类平抛运动)做匀速圆周运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变1.三种场的特点对比项目名称力的特点功和能的特点重力场大小:G=_________方向:_____________重力做功与______无关重力做功改变物体的____________静电场大小:F=______电场力做功与____无关方向:a.正电荷受力方向与场强方向_______W=______b.负电荷受力方向与场强方向_________电场力做功改变________磁场洛伦兹力F=______方向符合_______定则洛伦兹力不做功,不改变带电粒子的_______mg竖直向下qE相同相反左手路径重力势能路径电势能动能UqqvB电偏转磁偏转运动轨迹运动规律电偏转磁偏转射出边界的速率运动时间1.带电粒子在匀强电场和匀强磁场中偏转的区别垂直电场线进入匀强电场(不计重力)垂直磁感线进入匀强磁场(不计重力)受力情况电场力FE=qE,其大小、方向不变,与速度v无关,FE是恒力洛伦兹力FB=qvB,其大小不变,方向随v而改变,FB是变力轨迹抛物线圆或圆的一部分运动轨迹2.在电场和磁场组合而成的组合场问题中,带电粒子分别在两个区域中做类平抛和匀速圆周运动,通过连接点的速度将两种运动联系起来,一般可用类平抛和匀速圆周运动的规律求解.另外,准确画好运动轨迹图是解题的关键.“电偏转”和“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转)情景图图6­2­1【例1】真空中宽为d的区域内有强度为B的匀强磁场,方向如图6­2­1所示,质量m带电量-q的粒子以与CD成q角的速度v0垂直射入磁场中.要使粒子必能从EF射出,则初速度v0应满足什么条件?EF上有粒子射出的区域?一、处理同源带电粒子在磁场中运动的临界极值方法--放缩法思维导图1.带电粒子在平行直线边界磁场中的运动①速度较小时,作半圆运动后从原边界飞出;②速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;③速度较大时粒子作部分圆周运动后从另一边界飞出SBPSSQPQQ①速度较小时,作圆周运动通过射入点;②速度增加为某临界值时,粒子作圆周运动其轨迹与另一边界相切;③速度较大时粒子作部分圆周运动后从另一边界飞出圆心在过入射点跟跟速度方向垂直的直线上圆心在过入射点跟边界垂直的直线上圆心在磁场原边界上量变积累到一定程度发生质变,出现临界状态P①速度较小时,作圆弧运动后从原边界飞出;②速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;③速度较大时粒子作部分圆周运动后从另一边界飞出【分析】如图甲所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可.【解析】粒子从A点进入磁场后受洛伦兹力做匀速圆周运动,要使粒子必能从EF射出,则相应的临界轨迹必为过点A并与EF相切的轨迹如图乙所示,作出A、P点速度的垂线相交于O即为该临界轨迹的圆心.设临界半径R0,由R0(1+cos

)=d得:R0=;故粒子必能穿出EF的实际运动轨迹半径R≥R0即:R=≥

得:v0≥由图知粒子不可能从P点下方射出EF,即只能从P点上方某一区域射出;又由于粒子从点A进入磁场后所受洛伦兹力必使其向右下方偏转,故粒子不可能从AG直线上方射出;由此可见EF中有粒子射出的区域为PG,且由图知:PG=R0sin+dcot=+dcot

.【评析】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键是寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围.总结:放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示,(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大.可以发现这样的粒子源产生的粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP′上.由此我们可得到一种确定临界条件的方法:在确定这类粒子运动的临界条件时,可以以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹,从而探索出临界条件,使问题迎刃而解,这种方法称为“放缩法”.变式题12.带电粒子在矩形边界磁场中的运动oBdabcθB圆心在磁场原边界上圆心在过入射点跟速度方向垂直的直线上①速度较小时粒子作半圆运动后从原边界飞出;②速度在某一范围内时从侧面边界飞出;③速度较大时粒子作部分圆周运动从对面边界飞出。①速度较小时粒子做部分圆周运动后从原边界飞出;②速度在某一范围内从上侧面边界飞;③速度较大时粒子做部分圆周运动从右侧面边界飞出;④速度更大时粒子做部分圆周运动从下侧面边界飞出。量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)例3.如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O方向垂直磁场射入一速度方向跟ad边夹角θ=300

、大小为v0的带电粒子,已知粒子质量为m、电量为q,ab边足够长,ad边长为L,粒子的重力不计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。⑵.如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间。V0OabcdV0Oabcdθ300600●●例1.如图,在一水平放置的平板MN上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图是正确的?MNBO2RR2RMNO2RR2RMNO2R2R2RMNOR2R2RMNOD.A.B.C.二、处理一群带电粒子在磁场中运动的临界极值思维方法

--平移法解:带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,由R=mv/qB,各个粒子在磁场中运动的半径均相同,在磁场中运动的轨迹圆圆心是在以O为圆心、以R=mv/qB为半径的1/2圆弧上,如图虚线示:各粒子的运动轨迹如图实线示:带电粒子可能经过的区域阴影部分如图斜线示2RR2RMNO总结:平移法本题是粒子以一定速度沿任意方向射入磁场的问题,由平移法做出轨迹圆心圆(如虚圆),再做动态圆,找临界状态(如图P1P2)。【变式题2】(2010·新课标)如图6­1­3所示,在0≤x≤a、0≤y≤

范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.已知粒子在磁场中做圆周运动的半径介于

到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.分析:本题是粒子以一定速度沿任意方向射入磁场的问题,由平移法做出轨迹圆心圆(如虚圆),

再做动态圆,找临界状态。最后离开磁场的粒子在磁场中的圆周运动的弦最长,经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.则粒子速度方向改变900粒子也即粒子半径转过的最大圆心角为900在动态圆中与边界相切的这种情况弦最长,对应的圆心角为900,最后射出磁场【解析】(1)设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,由牛顿第二定律和洛伦兹力公式,得qvB=m

①由①式得R=②当a/2<R<a时,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的上边界相切,如右图所示,设该粒子在磁场运动的时间为t,依题意t=T/4,得∠OCA=③设最后离开磁场的粒子的发射方向与y轴正方向的夹角为a,由几何关系可得Rsina=R-④Rsina=a-Rcosa

⑤又sin2a+cos2a=1⑥由④⑤⑥式得R=(2-)a

⑦由②⑦式得v=(2-)⑧(2)由④⑦式得sina=⑨小结1.带电粒子进入有界磁场,运动轨迹为一段弧线.2.当同源粒子垂直进入磁场的运动轨迹3.注意圆周运动中的有关对称规律:(2)粒子进入单边磁场时,入射速度与边界夹角等于出射速度与边界的夹角;(1)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.练习1一定速度的粒子沿各个方向从内圆射出时与内圆相切方向射入磁场径向距离最大,最易射出磁场(平移法做出轨迹圆心圆如虚圆,如左图)当粒子以大小不同的速度沿与内圆相切方向射入磁场(由放缩法知)轨道与外圆相切时对应的速度是所有粒子射不出磁场的最大速度练习2平移法做出轨迹圆心圆如虚圆,如左图练习3练习4练习5放缩法两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图6­3­1所示.在y>0,0<x<a的区域有垂直于纸面向里的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点处有一小孔,一束质量为m、带电量为q(q>0))的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论