版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
温故知新一般三角形三个内角和是180°,两边之和大于第三边,两边之差小于第三边.直角三角形两个锐角互余.直角三角形的三边a、b、c有没有等量关系呢?第十七章勾股定理Zx```xk17.1勾股定理第1课时主讲教师:马托强数学家曾建议用这个图作为与“外星人”联系的信号.你知道这是为什么吗?你见过这个漂亮的图案吗?这个图案有什么意义?Zx```x```k`
我国有记载的最早勾股定理的证明,是三国时,我国古代数学家赵爽在他所著的《勾股方圆图注》中,用四个全等的直角三角形拼成一个中空的正方形来证明的.每个直角三角形的面积叫朱实,中间的正方形面积叫黄实,大正方形面积叫弦实,这个图也叫弦图.2002年的国际数学家大会将此图作为大会会徽.在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股勾股定理的由来这个定理在中国又称为“商高定理”,商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:“…故折矩,勾广三,股修四,经隅五.”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成“勾三股四弦五”.由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”.本节课学习目标1、了解勾股定理的数学文化背景,经历勾股定理探索的过程,理解勾股定理的常见证明方法,能用图形、文字和符号来描述勾股定理的内容。2、在探索勾股定理的过程中,发展合情推理和演绎推理的能力。3、在探索勾股定理的过程中培养探索精神,感受生活中的数学,培养数学兴趣。情境导入1相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.我们也来观察右图中的地面,看看有什么发现?
数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?直角三角形三边有什么关系?SA+SB=SC两直边的平方和等于斜边的平方ABCABCABC(图中每个小方格代表一个单位面积)图2-1图2-2让我们一起再探究:等腰直角三角形三边关系A的面积(单位长度)B的面积(单位长度)C的面积(单位长度)图1图29918448ABCABC(图中每个小方格代表一个单位面积)图2-1图2-2分“割”成若干个直角边为整数的三角形(单位面积)ABCABC(图中每个小方格代表一个单位面积)图2-1图2-2(单位面积)把C“补”成边长为6的正方形面积的一半ABCABC(图中每个小方格代表一个单位面积)图2-1图2-2
SA+SB=SCA的面积(单位长度)B的面积(单位长度)C的面积(单位长度)图2-19918图2-2A、B、C面积关系直角三角形三边关系448两直角边的平方和等于斜边的平方进一步思考是不是所有的直角三角形都是这样的呢?(1)观察右边两幅图:
(2)填表(每个小正方形的面积为单位1):A的面积B的面积C的面积左图右图49169??探究CBCA734“补”的方法SC=S大正方形
-4×S小直角三角形
CBCA“割”的方法34SC
=4×S小直角三角形
+
S小正方形(1)观察右边两幅图:
(2)填表(每个小正方形的面积为单位1):A的面积B的面积C的面积左图右图491691325探究A的面积B的面积C的面积左图右图491691325探究根据表中数据,你得到了什么?结论(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?继续思考ABCCBA┏a2+b2=c2acb
如果直角三角形的两直角边长分别是a、b,斜边长是c,那么a2+b2=c2。勾股弦
命题1:探究
看左边的图案,这个图案是公元3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(红色)可以如图围成一个大正方形,中间的部分是一个小正方形(黄色).赵爽的“弦图”早在公元3世纪,我国数学家赵爽就用左边的图形验证了“勾股定理”思考:你能验证吗?(4)(3)(2)(1)(1)(2)(3)(4)cccc(a-b)2(a-b)2C2-4×ab=a2+b2=c2可得:a2+b2-2ab=c2-2abbCa想一想:这四个直角三角形还能怎样拼?证明一babababacccc想一想:大正方形的面积该怎样表示?(a+b)2=a2+b2+2ab=c2+2ab可得:a2+b2
=c2证明二1.成立条件:在直角三角形中;3.作用:已知直角三角形任意两边长,求第三边长.2.公式变形:abc如果直角三角形两直角边长分别为a、b,斜边长为c,那么勾股定理(注意:哪条边是斜边)1.已知Rt△ABC中,∠C=90°,若a=2,c=5,求b.小试身手2.在Rt△ABC中,∠B=90°,a=3,b=4,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省佛山市三校2024-2025学年高三上学期第一次联合模拟考试生物试题含答案
- 2024年低价插秧机转让合同范本
- 2024年代理防腐漆保养合同范本
- 初中数学培训简报
- 第五单元 平行四边形和梯形(单元测试)(含答案)-2024-2025学年四年级上册数学人教版
- 医疗救援平台方案
- 了解医疗决策
- 医疗服务补偿与投入
- 中班清明节活动教案
- 个人两年规划
- MOOC创新创业与管理基础(东南大学)
- 高等代数参考答案
- 车间生产计划完成情况统计表
- 妇科病史及体查
- 教师评课意见和建议
- 2023年初级游泳救生员理论知识考试题库(浓缩400题)
- 施工现场临时用电安全技术规范
- 小数四则混合运算练习【说课稿】苏教版数学五年级上册
- 部编版道德与法治四年级上册第11课《变废为宝有妙招》优质课件
- 全面无反应性量表(FOUR)
- (完整word版)新《中华颂》朗诵稿
评论
0/150
提交评论