2023届山东省临沂经济开发区四校联考数学九年级第一学期期末达标检测模拟试题含解析_第1页
2023届山东省临沂经济开发区四校联考数学九年级第一学期期末达标检测模拟试题含解析_第2页
2023届山东省临沂经济开发区四校联考数学九年级第一学期期末达标检测模拟试题含解析_第3页
2023届山东省临沂经济开发区四校联考数学九年级第一学期期末达标检测模拟试题含解析_第4页
2023届山东省临沂经济开发区四校联考数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个小正方体沿着斜面前进了10米,横截面如图所示,已知,此时小正方体上的点距离地面的高度升高了()A.5米 B.米 C.米 D.米2.如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OA=5,则AB的长为()A.2 B.4 C.6 D.83.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个 B.16个 C.20个 D.25个4.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90º.则小意同学判断的依据是()A.等角对等边 B.线段中垂线上的点到线段两段距离相等C.垂线段最短 D.等腰三角形“三线合一”5.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个()A.45 B.48 C.50 D.556.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.7.在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),对称轴是直线x=-1.则下列结论正确的是()A.ac>0 B.b2-4ac=0 C.a-b+c<0 D.当-3<x<1时,y>08.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线()A. B. C. D.9.如图,是的外接圆,已知,则的大小为()A. B. C. D.10.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=3二、填空题(每小题3分,共24分)11.已知线段a=4cm,b=9cm,则线段a,b的比例中项为_________cm.12.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°13.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.14.一个正n边形的一个外角等于72°,则n的值等于_____.15.如图,⊙O的半径为2,AB是⊙O的切线,A.为切点.若半径OC∥AB,则阴影部分的面积为________.16.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)17.已知点A(-3,m)与点B(2,n)是直线y=-x+b上的两点,则m与n的大小关系是___.18.半径为5的圆内接正六边形的边心距为__________.三、解答题(共66分)19.(10分)如图,已知Rt△ABO,点B在轴上,∠ABO=90°,∠AOB=30°,OB=,反比例函数的图象经过OA的中点C,交AB于点D.(1)求反比例函数的表达式;(2)求△OCD的面积;(3)点P是轴上的一个动点,请直接写出使△OCP为直角三角形的点P坐标.20.(6分)如图,是半圆的直径,是半圆上的点,且于点,连接,若.求半圆的半径长;求的长.21.(6分)解方程:(x+3)(x﹣6)=﹣1.22.(8分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.23.(8分)计算:+2﹣1﹣2cos60°+(π﹣3)024.(8分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形,将矩形绕点按顺时针方向旋转,当落在CD上时停止转动,旋转后的矩形记为矩形,设旋转角为,求的值.25.(10分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?26.(10分)计算:cos30°•tan60°+4sin30°.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意,用未知数设出斜面的铅直高度和水平宽度,再运用勾股定理列方程求解.【详解】解:Rt△ABC中,AB=2BC,

设BC=x,则AC=2x,

根据勾股定理可得,

x2+(2x)2=102,

解得x=或x=(负值舍去),即小正方体上的点N距离地面AB的高度升高了米,

故选:B.【点睛】此题主要考查了解直角三角形的应用-坡度坡角问题,解题的关键是熟练运用勾股定理的知识,此题比较简单.2、D【解析】利用垂径定理和勾股定理计算.【详解】根据勾股定理得,根据垂径定理得AB=2AD=8故选:D.【点睛】考查勾股定理和垂径定理,熟练掌握垂径定理是解题的关键.3、B【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:=0.2,解得:x=16,故选:B..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系4、B【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE,OE=OD,∴AO是线段DE的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B.【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断.5、A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A.6、C【解析】易知y是x的反比例函数,再根据边长的取值范围即可解题.【详解】∵草坪面积为200m2,∴x、y存在关系y=200x∵两边长均不小于10m,∴x≥10、y≥10,则x≤20,故选:C.【点睛】本题考查反比例函数的应用,根据反比例函数解析式确定y的取值范围,即可求得x的取值范围,熟练掌握实际问题的反比例函数图象是解题的关键.7、D【分析】根据二次函数图象和性质逐项判断即可.【详解】解:∵抛物线y=ax2+bx+c的图象开口向下,与y轴交于点B(0,3),∴a<0,c>0,∴ac<0,故A选项错误;∵抛物线y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故B选项错误;∵对称轴是直线x=-1,∴当x=-1时,y>0,即a-b+c>0,故C选项错误;∵抛物线y=ax2+bx+c对称轴是直线x=-1,与x轴交于A(1,0),∴另一个交点为(-3,0),∴当-3<x<1时,y>0,故D选项正确.故选:D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的图象和性质是解题的关键.8、B【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【详解】∵方程x2+bx+c=0的两个根分别为x1=-1,x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(-1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x.故选:B.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解答本题的关键.9、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO,∴∠ABO=(180°-100°)÷2=40°,故选:B.【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.二、填空题(每小题3分,共24分)11、6【分析】设比例中项为c,得到关于c的方程即可解答.【详解】设比例中项为c,由题意得:,∴,∴c1=6,c2=-6(不合题意,舍去)故填6.【点睛】此题考查线段成比例,理解比例中项的含义即可正确解答.12、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.13、【解析】连接OE、OD′,作OH⊥ED′于H,通过证得AEO≌△HEO(AAS),AE=EH=ED=2,设OB=OE=x.则AO=6﹣x,根据勾股定理得x2=22+(6﹣x)2,解方程即可求得结论.【详解】解:连接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四边形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切线,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴设OB=OE=x.则AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案为:.【点睛】本题是圆的综合题目,考查了切线的性质和判定、正方形的性质、勾股定理,方程,全等三角形的判定与性质等知识;本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.14、1.【分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=1.故答案为:1【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.15、3π【分析】由切线及平行的性质可知,利用扇形所对的圆心角度数可得阴影部分面积所占的白分比,再用圆的面积乘以百分比即可.【详解】解:AB是⊙O的切线,A.为切点即阴影部分的面积故答案为:.【点睛】本题考查了切线的性质及扇形的面积,熟练掌握圆的切线垂直于过切点的半径这一性质是解题的关键.16、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.17、m>n【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【详解】∵直线y=−x+b中,k=−<0,∴此函数y随着x增大而减小.∵−3<2,∴m>n.故填:m>n.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.18、【分析】连接OA、OB,作OH⊥AB,根据圆内接正六边形的性质得到△ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.【详解】如图,连接OA、OB,作OH⊥AB,∵六边形ABCDEF是圆内接正六边形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等边三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案为:.【点睛】此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到∠FAB=∠ABC=120是解题的关键,由此即可证得△ABO是等边三角形,利用勾股定理解决问题.三、解答题(共66分)19、(1);(2)面积为;(3)P(2,0)或(4,0)【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S△OCD=S△AOB-S△ACD-S△OBD;(3)分两种情形:①∠OPC=90°.②∠OCP=90°,分别求解即可.【详解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=,∴AB=OB=2,作CE⊥OB于E,

∵∠ABO=90°,

∴CE∥AB,

∴OC=AC,

∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为;(2)∵OB=,∴D的横坐标为,代入得,y=,∴D(,),∴BD=,∵AB=,∴AD=,∴S△OCD=S△AOB-S△ACD-S△OBD=OB•AB-AD•BE-BD•OB=(3)当∠OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),

∴P(2,0).

当∠OCP=90°时.

∵C(2,2),

∴∠COB=45°.

∴△OCP为等腰直角三角形.

∴P(4,0).

综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.20、半圆的半径为;【分析】(1)根据垂径定理的推论得到OD⊥AC,AE=AC,设圆的半径为r,根据勾股定理列出方程,解方程即可;(2)由题意根据圆周角定理得到∠C=90°,根据勾股定理计算即可.【详解】解:于点且,设半径为,则在中有解得:即半圆的半径为;为半圆的直径则在中有.【点睛】本题考查的是圆心角、弧、弦的关系定理、垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.21、x=5或x=﹣2.【分析】先把方程化为一元二次方程的一般形式,然后再运用因式分解法解方程即可解答.【详解】将方程整理为一般式,得:x2﹣3x﹣10=0,则(x﹣5)(x+2)=0,∴x﹣5=0或x+2=0,解得x=5或x=﹣2.【点睛】本题考查一元二次方程的解法,属于基础题,解题的关键是熟练掌握一元二次方程的四种解法.22、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,)【分析】(1)先利用三角函数求出OD,得出点A坐标,进而求出反比例函数解析式,进而求出点B坐标,将点A,B坐标代入直线解析式中,建立方程组,求解即可得出结论;(2)根据图象直接得出结论;(3)设出点E坐标,进而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三种情况,建立方程求解即可得出结论.【详解】∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣,∵点B(n,﹣2)在反比例函数y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴,∴,∴一次函数的解析式为y=﹣x+1;(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①当OA=OE时,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②当OA=AE时,5=,∴a=8或a=0(舍),∴P(0,8),③当OE=AE时,|a|=,∴a=,∴P(0,),即:满足条件的点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,).【点睛】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数,等腰三角形的性质,用方程的思想解决问题是解本题的关键.23、【分析】本题涉及零指数幂、负整数指数幂、特殊三角函数值、二次根式化简等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=3+﹣2×+1=【点睛】本题是一道关于零指数幂、负整数指数幂、特殊三角函数值、二次根式化简等知识点的计算题目,熟记各知识点是解题的关键.24、(1);(2)矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)【解析】分析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论