2023届江西省景德镇市数学九上期末学业质量监测试题含解析_第1页
2023届江西省景德镇市数学九上期末学业质量监测试题含解析_第2页
2023届江西省景德镇市数学九上期末学业质量监测试题含解析_第3页
2023届江西省景德镇市数学九上期末学业质量监测试题含解析_第4页
2023届江西省景德镇市数学九上期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b2.若两个相似三角形的相似比是1:2,则它们的面积比等于()A.1: B.1:2 C.1:3 D.1:43.sin30°的值为()A. B. C.1 D.4.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2 B.3 C.4 D.55.如图所示,该几何体的俯视图是()A. B. C. D.6.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小7.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°8.已知函数y=ax2+bx+c(a≠0)的图象如图,则函数y=ax+b与y=的图象大致为()A. B.C. D.9.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.10.如图,四边形是边长为5的正方形,E是上一点,,将绕着点A顺时针旋转到与重合,则()A. B. C. D.11.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象关于y轴对称C.图象位于第二、四象限 D.当x<0时,y随x的增大而减小12.下图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是()A.② B.③ C.④ D.⑤二、填空题(每题4分,共24分)13.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.14.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似,两三角形位于点B同侧且相似比是3,则点C的对应顶点C1的坐标是_____.15.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.16.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=________.(用单位向量表示)17.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.18.如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段的中点,则的值为_____.三、解答题(共78分)19.(8分)已知二次函数中,函数与自变量的部分对应值如下表:············(1)求该二次函数的表达式;(2)当时,的取值范围是.20.(8分)央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作、、、.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为.(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表),求所选取的这两名学生恰好是一男一女的概率.21.(8分)港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.732,tan20°≈0.36,结果精确到0.1)22.(10分)如图所示的双曲线是函数为常数,)图象的一支若该函数的图象与一次函数的图象在第一象限的交点为,求点的坐标及反比例函数的表达式.23.(10分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.24.(10分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.25.(12分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.26.如图,在等腰中,,以为直径作交于点,过点作,垂足为.(1)求证:是的切线.(2)若,,求的长.

参考答案一、选择题(每题4分,共48分)1、D【分析】对于反比例函数(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内.由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A对应的x值小于点B对应的x值,∴点A对应的y值大于点B对应的y值,即a>b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.2、D【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.3、B【分析】直接根据特殊角的三角函数值进行选择.【详解】sin30°=,故选:B.【点睛】此题考查特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.4、B【解析】设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.5、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.6、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.【点睛】本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.7、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.8、C【分析】直接利用二次函数、一次函数、反比例函数的性质分析得出答案.【详解】∵二次函数开口向下,∴a<0,∵二次函数对称轴在y轴右侧,∴a,b异号,∴b>0,∵抛物线与y轴交在负半轴,∴c<0,∴y=ax+b图象经过第一、二、四象限,y=的图象分布在第二、四象限,故选:C.【点睛】本题考查了函数的性质以及图象问题,掌握二次函数、一次函数、反比例函数的性质是解题的关键.9、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.10、D【分析】根据旋转变换的性质求出、,根据勾股定理计算即可.【详解】解:由旋转变换的性质可知,,∴正方形的面积=四边形的面积,∴,,∴,,∴.故选D.【点睛】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.11、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=的图象上,故本选项错误;

B选项:反比例函数的图象关于原点中心对称,故本选项错误;

C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;

D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.

故选B.12、A【详解】②是该几何体的俯视图;③是该几何体的左视图和主视图;④、⑤不是该几何体的三视图.故选A.【点睛】从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.二、填空题(每题4分,共24分)13、1.【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,1,1,1,1,3中,1出现3次,出现的次数最多,∴这组数据的众数是1,故答案为:1.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.14、(0,-3)【解析】根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形在改变的过程中保持形状不变(大小可变)即可得出答案.【详解】把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,所画图形如图所示,C1坐标为(0,-3).【点睛】本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数.15、相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离16、【解析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,故答案为:.17、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.18、2【解析】先根据抛物线解析式求出点坐标和其对称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值.【详解】解:∵抛物线与轴交于点,∴,抛物线的对称轴为∴顶点坐标为,点坐标为∵点为线段的中点,∴点坐标为设直线解析式为(为常数,且)将点代入得∴将点代入得解得故答案为:2【点睛】考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.三、解答题(共78分)19、(1)或;(2)或【分析】(1)根据抛物线的对称性从表格中得出其顶点坐标,设出顶点式,任意代入一个非顶点的点的坐标即可求解.(2)结合表格及函数解析式及其增减性解答即可.【详解】(1)由题意得顶点坐标为.设函数为.由题意得函数的图象经过点,所以.所以.所以两数的表达式为(或);由所给数据可知当时,有最小值,二次函数的对称轴为.又由表格数据可知当时,对应的的范围为或.【点睛】本题考查的是确定二次函数的表达式及二次函数的性质,掌握二次函数的对称性及增减性是关键.20、(1)50;144;(2)详见解析;(3).【分析】(1)根据A组的人数及占比即可求解被调查对象的总人数,再求出D,B的占比即可求出被调查者“比较喜欢”等级所对应圆心角的度数;(2)求出各组的人数即可作图;(3)根据题意列表表示出所有情况,再利用概率公式即可求解.【详解】(1)本次被调查对象共有16÷32%=50,D的占比为4÷50=8%,故B的占比为1-32%-20%-8%=40%∴扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为360°×40%=144°,故答案为:50;144(2)B组的人数为50×40%=20(人),C组的人数为50×20%=10(人),∴补全条形统计图如下:(3)依题意列表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)∴(恰好选中一名男生和一名女生).【点睛】此题主要考查统计调查及概率的求解,解题的关键是根据题意列出表格表示所有情况.21、斜拉索顶端A点到海平面B点的距离AB约为93.7米.【分析】在Rt△ACD和Rt△BCD中,根据锐角三角函数求出AD、BD,即可求出AB.【详解】如图,由题意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD•tan∠ACD=100×≈57.73(米),在Rt△BCD中,BD=CD•tan∠BCD≈100×0.36≈36(米),∴AB=AD+DB=57.73+36=93.73≈93.7(米),答:斜拉索顶端A点到海平面B点的距离AB约为93.7米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题问题,掌握锐角三角函数的意义是解题的关键.22、点的坐标为;反比例函数的表达式为.【分析】先将x=2代入一次函数中可得,点的坐标为,再将点A的坐标代入可得反比例函数的解析式.【详解】解:点在一次函数的图象上,点的坐标为.又点在反比例函数为常数,)的图象上,反比例函数的表达式为.【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.23、(1)进馆人次的月平均增长率为20%;(2)到第五个月时,进馆人数将超过学校图书馆的接纳能力,见解析【分析】(1)设进馆人次的月平均增长率为x,根据第三个月进馆达到288次,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第五个月的进馆人次,再与400比较大小即可.【详解】(1)设进馆人次的月平均增长率为x,根据题意,得:200(1+x)2=288解得:x1=0.2,x2=﹣2.2(舍去).答:进馆人次的月平均增长率为20%.(2)第四个月进馆人数为288(1+0.2)=345.6(人次),第五个月进馆人数为288(1+0.2)2=414.1(人次),由于400<414.1.答:到第五个月时,进馆人数将超过学校图书馆的接纳能力.【点睛】本题考查了一元二次方程的应用-增长率问题,列出方程是解答本题的关键.本题难度适中,属于中档题.24、证明见解析.【分析】连接OD,根据弧长公式求出AOD的度数,再证明AB⊥BC即可;【详解】证明:如图,连接,是直径且

.

设,的长为,

解得.

在☉O中,..

,,即又为直径,是☉O的切线.【点睛】本题考查切线的判定,圆周角定理以及等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论