版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一根水平放置的圆柱形输水管横截面积如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.4米 B.5米 C.6米 D.8米2.下列方程中,是一元二次方程的是()A. B.C. D.3.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A.40cm2 B.20cm2C.25cm2 D.10cm24.27的立方根是()A.±3 B.±3 C.3 D.35.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°6.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)7.如图是我们学过的反比例函数图象,它的表达式可能是()A. B. C. D.8.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.110.关于的一元二次方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根二、填空题(每小题3分,共24分)11.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.12.已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为___cm.13.如图,点A在函数y=(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.15.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).17.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.18.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.三、解答题(共66分)19.(10分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?20.(6分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.21.(6分)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)a=_____;b=_____;c=_____;(2)填空:(填“甲”或“乙”).①从平均数和中位数的角度来比较,成绩较好的是_____;②从平均数和众数的角度来比较,成绩较好的是_____;③成绩相对较稳定的是_____.22.(8分)(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.23.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.24.(8分)如图,在中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作于点H,连接DE交线段OA于点F.(1)试猜想直线DH与⊙O的位置关系,并说明理由;(2)若AE=AH,EF=4,求DF的值.25.(10分)如图,是平行四边形的对角线,.(1)求证:四边形是菱形;(2)若,,求菱形的面积.26.(10分)如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D不与A、C重合,ED⊥AC.(1)当sinB=时,①求证:BE=2CD.②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,求线段CD的长.
参考答案一、选择题(每小题3分,共30分)1、B【详解】解:∵OC⊥AB,AB=8米,∴AD=BD=4米,设输水管的半径是r,则OD=r﹣2,在Rt△AOD中,∵OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=1.故选B.【点睛】本题考查垂径定理的应用;勾股定理.2、C【分析】根据一元二次方程的定义求解,一元二次方程必须满足两个条件:①未知数的最高次数是2;②二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、是分式方程,故A不符合题意;
B、是二元二次方程,故B不符合题意;
C、是一元二次方程,故C符合题意;
D、是二元二次方程,故D不符合题意;
故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是(且a≠1).特别要注意a≠1的条件,这是在做题过程中容易忽视的知识点.3、B【解析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,
∵矩形的对边DG∥EF,
∴△ADG∽△ABC,∴,即,解得DG=(8-x),
四边形DEFG的面积=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,
所以,当x=4,即DE=4时,四边形DEFG最大面积为10cm1.
故选B.【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.4、C【分析】由题意根据如果一个数x的立方等于a,那么x是a的立方根,据此定义进行分析求解即可.【详解】解:∵1的立方等于27,∴27的立方根等于1.故选:C.【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.5、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.7、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A、为二次函数表达式,故A选项错误;B、为反比例函数表达式,且,经过第一三象限,符合图象,故B选项正确;C、为反比例函数表达式,且,经过第二四象限,不符合图象,故C选项错误;D、为一次函数表达式,故D选项错误.故答案为B.【点睛】本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.8、C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9、D【详解】连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故选D.10、A【分析】先写出的值,计算的值进行判断.【详解】
方程有两个不相等的实数根故选A【点睛】本题考查一元二次方程根的判别式,是常见考点,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记公式并灵活应用公式是解题关键.二、填空题(每小题3分,共24分)11、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、【分析】把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割,其比值是【详解】∵P为线段AB的黄金分割点,且PA>PB,AB=2cm,∴故答案为.【点睛】分析题意可知,本题主要考查了黄金分割,弄清楚黄金分割的定义是解答此题的关键;13、【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=,∴k=1×=.故答案为:【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.15、18【分析】根据菱形对角线垂直且互相平分,且每条对角线平分它们的夹角,即可得出菱形的另一条对角线长,再利用菱形的面积公式求出即可.【详解】解:如图所示:∵菱形有一个内角为60°,较短的对角线长为6,∴设∠BAD=60°,BD=6,∵四边形ABCD是菱形,∴∠BAC=∠DAC=30°,DO=BO=3,∴AO==3,∴AC=6,则它的面积为:×6×6=18.故答案为:18.【点睛】本题考查菱形的性质,熟练掌握菱形的面积公式以及对角线之间的关系是解题关键.16、【分析】过点C作CD⊥AB于点D,在Rt△ABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可.【详解】过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×=.故答案为.【点睛】本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键.17、1【解析】由,和坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵,和坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;⑤从图象上看,当或,函数值要大于当时的,因此⑤是不正确的;故答案是:1【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.18、46°【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠DCB=80°∴∠BDC=180°-∠DBC-∠DCB=46°∴∠BOC=2∠BDC=92°又∵OB=OC∴∠OBC=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.三、解答题(共66分)19、(1)(,x为整数),(,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,分段讨论函数的最值,进行比较即可得出最大利润及月份.【详解】解:(1)当时,;当时,设,将(4,140),(12,220)代入得,解得∴∴y与x的函数关系式为:(,x为整数),(,x为整数)(2)设生猪饲养场月利润为W,当(x为整数)时,,因为,W随x的增大而减小,所以当x取最小值1时,万元当(x为整数)时,,因为,所以当时,万元;综上所述,该饲养场一月份的利润最大,最大利润是203万元【点睛】本题考查了待定系数法求一次函数解析式,以及一次函数和二次函数的最值问题,熟练掌握待定系数法和二次函数的最值求法是解题的关键.20、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.试题解析:(1)△A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,∵AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.21、(1)7,7.5,4.2;(2)①乙,②乙;③甲【分析】(1)根据平均数、中位数、方差的定义分别计算即可解决问题;
(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,从方差来看,乙的方差大于甲,所以甲的成绩相对较稳定.【详解】解:(l)a=(5+2×6+4×7+2×8+9)=7(环),b=(7+8)=7.5(环),c=[(3﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(8﹣7)2+(7﹣7)2+(8﹣7)2+(10﹣7)2+(9﹣7)2]=4.2(环2);故答案为:7,7.5,4.2;(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,乙的方差大于甲.①从平均数和中位数的角度来比较,成绩较好的是:乙;②从平均数和众数的角度来比较,成绩较好的是乙;③成绩相对较稳定的是:甲.故答案为:乙,乙,甲.【点睛】本题考查了条形统计图、折线统计图、平均数、中位数、方差等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1)见解析;(2)【分析】(1)根据圆周角定理可证∠APB=90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO,并延长PO交⊙O于点C,连接AC,根据圆周角定理可得∠PAC=90°,∠C=∠B,求得∠PAC=∠PQB,根据相似三角形的性质即可得到结论.【详解】(1)如图①所示:∵AB为⊙O的直径∴∠APB=90°又∵PQ⊥AB∴∠AQP=90°∴∠AQP=∠APB又∵∠PAQ=∠BAP∴△APQ∽△ABP.(2)如图②,连接PO,并延长PO交⊙O于点C,连接AC.∵PC为⊙O的直径∴∠PAC=90°又∵PQ⊥AB∴∠PQB=90°∴∠PAC=∠PQB又∵∠C=∠B(同弧所对的圆周角相等)∴△PAC∽△PQB∴又∵⊙O的半径为7,即PC=14,且PQ=4,PA=x,PB=y∴∴.【点睛】本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识.23、(1)见解析;(2)【分析】(1)根据垂径定理、切线的性质求出AB⊥CD,AB⊥BF,即可证明;(2)根据圆周角定理求出∠COD,根据弧长公式计算即可.【详解】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长为:=.【点睛】本题考查的是切线的性质、垂径定理、弧长的计算,掌握切线的性质定理、垂径定理和弧长的计算公式是解题的关键.24、(1)直线与⊙O相切,理由见解析;(2)DF=6【分析】(1)连接,根据等腰三角形的性质可得,,可得,即可证明OD//AC,根据平行线的性质可得∠ODH=90°,即可的答案;(2)连接,由圆周角定理可得∠B=∠E,即可证明∠C=∠E,可得CD=DE,由AB是直径可得∠ADB=90°,根据等腰三角形“三线合一”的性质可得HE=CH,BD=CD,可得OD是△ABC的中位线,即可证明,根据相似三角形的性质即可得答案.【详解】(1)直线与⊙O相切,理由如下:如图,连接,∵,∴,∵,∴,∴,,∵,∴∠ODH=∠DHC=90°,∴DH是⊙O的切线.(2)如图,连接,∵∠B和∠E是所对的圆周角,∴,∵∴∴DC=DE∵,∴HE=CH设AE=AH=x,则,,∵是⊙O的直径,∴∠ADB=90°∵AB=AC∴BD=CD∴OD是的中位线,,,∴,∴,∵EF=4∴DF=6【点睛】本题考查等腰三角形的性质、圆周角定理、切线的判定与性质及相似三角形的判定与性质,经过半径的外端点并且垂直于这条半径的直线是圆的切线,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;熟练掌握相关性质及定理是解题关键.25、(1)见解析;(2)【分析】(1)由平行四边形的性质得出∠DAC=∠BCA,再由已知条件得出∠BAC=∠BCA,即可得出AB=BC,进而证明是菱形即可;(2)连接BD交AC于O,证明四边形ABCD是菱形,得出AC⊥BD,,OB=OD=BD,由勾股定理求出OB,得出BD,▱ABCD的面积=AC•BD,即可得出结果.【详解】(1)证明:如图,在平行四边形中,∵,∴,又∵,∴,∴,∴平行四边形是菱形.(2)解:如图,连接,与交于由(1)四边形,是菱形,∴,,在中,,∴,∴菱形的面积为.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、勾股定理、菱形面积的计算;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键.26、(1)①证明见解析;②BE=2CD成立.理由见解析;(2)2或4.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《子网掩码的计算》课件
- 第6单元 科技文化与社会生活(B卷·能力提升练)(解析版)
- 百货商店电器城保安工作总结
- 集装箱散货转化公路运输代理协议三篇
- 2023-2024年员工三级安全培训考试题附参考答案【典型题】
- 乘除法应用题课件
- 2023年-2024年企业主要负责人安全培训考试题附解析答案
- 教育资源整合研究报告
- 《督脉与腧穴》课件
- 云平台下的供应链协同-洞察分析
- 阿里菜鸟裹裹云客服在线客服认证考试及答案
- 水库防恐反恐应急预案
- 危险化学品销售管理台帐
- 五输穴及临床应用1
- 绿植租摆服务投标方案(完整技术标)
- 童话知识竞赛课件
- 一氧化氮让你远离心脑血管病第(全书回顾综合版)
- GB/T 12574-2023喷气燃料总酸值测定法
- 2022年天津三源电力集团限公司社会招聘33人上岸笔试历年难、易错点考题附带参考答案与详解
- 2023-2024学年广东广州番禺区四年级数学第一学期期末综合测试试题含答案
- 抑郁病诊断证明书
评论
0/150
提交评论