版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章运动方程的建立主要内容2.1基本动力体系2.2运动方程的建立2.3
重力的影响2.4地基运动的影响2.5例题运动方程:描述结构中力与位移关系的数学表达式(有时称动力方程)运动方程是进行结构动力分析的基础运动方程的建立是结构动力学的重点,也是难点2.1基本动力体系单自由度体系:SDOF(Single-Degree-of-Freedom-System)
结构的运动状态仅需要一个几何参数即可以确定分析单自由度体系的意义:第一,单自由度系统包括了结构动力分析中涉及的所有物理量及基本概念。第二,很多实际的动力问题可以直接按单自由度体系进行分析计算。图2.1结构动力分析中常用的单自由度体系力学模型
2.1基本动力体系
(a)单层框架结构(b)弹簧―质点体系
图2.1结构动力分析中常用的单自由度体系力学模型
两个典型的单自由度体系物理元件:集中质量m阻尼系数c弹簧刚度k两个力学模型完全等效两个体系的运动方程相同
2.1基本动力体系1.惯性力(InertialForce)
惯性:保持物体运动状态的能力惯性力:大小等于物体的质量与加速度的乘积,
方向与加速度的方向相反。I—
惯性(Inertial);m—
质量(mass);ü—
质点的加速度。
2.1基本动力体系
2.弹簧的恢复力(ResistingForceofSpring)
对弹性体系,弹簧的恢复力也被称为弹性恢复力
弹性恢复力:大小等于弹簧刚度与位移(弹簧变形)的乘积,
方向指向体系的平衡位置。s—表示弹簧(Spring)k—弹簧的刚度(SpringStiffness)u—质点位移
2.1基本动力体系
单层框架结构的水平刚度
h—框架结构的高度E—弹性模量Ib和Ic—梁和柱的截面惯性矩
ρ→∞:
ρ→0
:2.1基本动力体系
3.阻尼力(DampingForce)
阻尼:引起结构能量的耗散,使结构振幅逐渐变小的一种作用阻尼来源(物理机制):(1)固体材料变形时的内摩擦,或材料快速应变引起的热耗散;(2)结构连接部位的摩擦,结构构件与非结构构件之间的摩擦;(3)结构周围外部介质引起的阻尼。例如,空气、流体等。粘滞(性)阻尼力可表示为:
D
—
阻尼(damping)c
—
阻尼系数(Dampingcoefficient)
ù
—
质点的运动速度
2.1基本动力体系阻尼系数c的确定:不能像结构刚度k那样可通过结构几何尺寸、构件尺寸等来获得,因为c是反映了多种耗能因素综合影响的系数,阻尼系数一般是通过结构原型振动试验的方法得到。粘滞(性)阻尼理论仅是多种阻尼中最为简单的一种。其它常用的阻尼:摩擦阻尼:阻尼力大小与速度大小无关,一般为常数;滞变阻尼:阻尼力大小与位移成正比(相位与速度相同);流体阻尼:阻尼力与质点速度的平方成正比。2.1基本动力体系
4.
线弹性体系和粘弹性体系
(LinearlyElasticSystemandViscousElasticSystem)线弹性体系:由线性弹簧(或线性构件)组成的体系。—最简单的理想化力学模型。粘弹性体系:当线弹性系统中进一步考虑阻尼的影响时的体系。
—结构动力分析中的最基本力学模型。2.1基本动力体系
5.非弹性体系(InelasticSystem)结构构件的力—变形关系为非线性关系,结构刚度不再为常数构件(或弹簧)的恢复力可表示为
fs是位移和速度的非线性函数。图2.6非弹性体系中结构构件的力与位移关系
2.2运动方程的建立1.利用牛顿(Newton)第二定律
图2.7单质点体系的受力分析
单质点体系运动时要满足的控制方程—运动方程2.2运动方程的建立利用牛顿第二定律的优点:牛顿第二定律是基于物理学中已有知识的直接应用,以人们最容易接受的知识建立体系的运动方程。2.2运动方程的建立2.
D’Alembert原理(直接动力平衡法)D’Alembert原理:在体系运动的任一瞬时,如果除了实际作用结构的主动力(包括阻尼力)和约束反力外,再加上(假想的)惯性力,则在该时刻体系将处于假想的平衡状态(动力平衡)。
图2.8单质点体系的受力分析
2.2运动方程的建立2.
D’Alembert原理(直接动力平衡法)D’Alembert原理的优点:静力问题是人们所熟悉的,有了D’Alembert
原理之后,形式上动力问题就变成了静力问题,静力问题中用来建立控制方程的方法,都可以用于建立动力问题的平衡方程,使对动力问题的思考有一定的简化。对很多问题,D’Alembert原理是用于建立运动方程的最直接、最简便的方法。D’Alembert原理的贡献:建立了动力平衡概念(1)按平衡条件建立运动方程-刚度法
-惯性力-弹性力对隔离体列平衡方程:k-刚度系数
刚度法步骤:(1)在质点上沿位移正向加惯性力;(2)取质点为隔离体并作受力图;(3)根据达朗伯原理对质量m列瞬时动力平衡方程,此即体系的运动方程。(2)按位移法协调建立方程-柔度法
1
δ对质量m列位移方程:
δ-柔度系数柔度法步骤:
(1)在质量上沿位移正方向加惯性力;(2)求动荷载和惯性力引起的位移;(3)令该位移与质量m的位移相等,即得到体系的位移方程(运动方程)。(3)建立运动方程例题
例1试建立图示刚架(a)的运动方程解:(1)刚度法(a)(b)由于横梁刚度无限大,刚架只产生水平位移。设横梁在某一时刻t的水平位移为y(t),向右为正。在柱顶设置附加链杆(图b),以y(t)作为基本未知量,用位移法列动平衡方程:令
作
图(图c),求得
(c)
(d)
考虑动荷载F(t)和惯性力
作MP图,求得(2)柔度法
设横梁在任一时刻的位移是由动荷载和惯性力共同作用产生的(图e),
所以,运动方程为:因此,横梁的位移为:作图(图f)(e)
(f)
求得所以,运动方程为可见,用两种方法求解后运动方程相同。例2.试建立图(a)所示刚架的运动方程(不计轴向变形)。(a)
(b)解:用柔度法求解图示结构质量m只产生水平位移。设质量m在任一时刻t的水平位移为,它是由动荷载(c)
质量m的位移为和惯性力作用产生的,共同向右为正。作图,
求得所以,运动方程成为
例3.试建立图(a)所示刚架的运动方程(不计轴向变形)。解:仍用柔度法求解(a)(b)分析同例2,质量m的位移为作图、图求得(c)
(d)
所以,运动方程为
由此可见,动静法建立单自由度体系的运动方程通常是以质量的静平衡位置作为计算动位移的起点,采用刚度法还是柔度法要视具体问题是求刚度系数方便,还是求柔度系数方便来定。对同一体系,两种方程都是一样的,对于单自由度体系:。2.2运动方程的建立3.虚位移原理虚位移原理:在一组外力作用下的平衡系统发生一个虚位移时,外力在虚位移上所做的虚功总和恒等于零。虚位移是指满足体系约束条件的无限小位移。
设体系发生一个虚位移δu
平衡力系在δu上做的总虚功为:
图2.8单质点体系的受力分析
2.2运动方程的建立3.虚位移原理虚位移原理的优点:虚位移原理是建立在对虚功分析的基础之上,而虚功是一个标量,可以按代数方式运算,因而比Newton第二定律,或D’Alembert原理中需要采用的矢量运算更简便。对如下图所示结构体系,用虚位移原理建立方程更简便一些
2.2运动方程的建立4.Hamilton原理应用变分法来建立结构体系的运动方程。动力学中广泛应用的变分法是Hamilton原理体系的平衡位置是体系的稳定位置,在稳定位置,体系的能量取得极值,一般是极小值。
Hamilton原理:在任意时间区段[t1,t2]内,体系的动能和位能的变分加上非保守力做功的变分等于0。
其中:
T——体系的总动能;
V——体系的位能,包括应变能及任何保守力的势能;
Wnc——作用于体系上非保守力(包括阻尼力及任意外荷载)所做的功;δ——指(在指定时间段内)所取的变分。
图2.8单质点体系的受力分析
2.2运动方程的建立4.Hamilton原理(积分形式的动力问题的变分方法)
Hamilton原理的优点:不明显使用惯性力和弹性力,而分别用对动能和位能的变分代替。因而对这两项来讲,仅涉及处理纯的标量,即能量。而在虚位移中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。动能:集中质量转动质量位能:拉伸弹簧转动弹簧多自由度体系:动能位能2.2运动方程的建立4.Hamilton原理(用Hamilton原理建立单自由度弹簧-质量体系的运动方程)体系的动能:位能(弹簧应变能):因此能量的变分非保守所做的功的变分(等于非保守力在位移变分上作的功)
将以上两式代入Hamilton原理的变分公式,得:对上式中的第一项进行分部积分2.2运动方程的建立5.运动的Lagrange方程(微分形式的动力问题的变分原理)
其中:
T——体系的动能;
V——体系的位能,包括应变能及任何保守力的势能;
Pncj——与uj相应的非保守力(包括阻尼力及任意外荷载)。2.2运动方程的建立5.运动的Lagrange方程用:Hamilton原理推导:Lagrange方程
2.2运动方程的建立5.运动的Lagrange方程
用Lagrange方程建立体系的运动方程体系的动能:
体系的位能:非保守力:因此,代入Lagrange方程:再一次得到体系的运动方程:2.2运动方程的建立五种建立运动方程的方法的特点牛顿第二定律是基于物理学中已有知识的直接应用,有助于理解和接受D’Alembert原理。D’Alembert原理是一种简单、直观的建立运动方程的方法,得到广泛的应用。更重要的是D’Alembert原理建立了动平衡的概念,使得在结构静力分析中的一些方法可以直接推广到动力问题。当结构具有分布质量和弹性时,直接应用D’Alembert原理,用动力平衡的方法来建立体系的运动方程可能是困难的。虚位移原理部分避免了矢量运算,在获得体系虚功后,可以采用标量运算建立体系的运动方程,简化了运算。Hamilton原理是一种建立运动方程的能量方法(积分形式的变分原理),如果不考虑非保守力作的功(主要是阻尼力),它是完全的标量运算,但实际上直接采用Hamilton原理建立运动方程并不多。Hamilton原理的美妙在于它以一个极为简洁的表达式概括了复杂的力学问题。Lagrange方程得到更多的应用,它和Hamilton原理一样,除非保守力(阻尼力)外,是一个完全的标量分析方法,不必直接分析惯性力和保守力(主要是弹性恢复力),而惯性力和弹性恢复力是建立运动方程时最为困难的处理对象,关于阻尼力实际上它一般不是通过数学推理分析,从材料、结构构件的几何尺寸等推演得到的,而往往是通过实验、测试的方法得到(至少对结构动力学是如此),因此,由阻尼产生的非保守力引起的困难并不大。这可能与纯粹的连续介质力学很不同,连续介质力学阻尼主要由介质本身引起,而结构动力学阻尼来源更广、更复杂,无法简单推出,而采用试验加假设方法。阻尼系数由实测或经验给出。2.2运动方程的建立表2.1给出了以上介绍的五种建立运动方程的方法的特点
2.2运动方程的建立单自由度体系的运动方程单自由度系统运动方程反映了结构动力学中将遇到的几乎所有的物理量(1)质量m,和惯性力:(2)阻尼c,和阻尼力:(3)刚度k,和弹性恢复力:对于多自由度体系:
2.3
重力的影响静平衡位置:受动力作用以前结构所处的实际位置
Δst——重力W=mg作用下体系的静位移记:动位移为u
惯性力、阻尼力和弹性恢复力分别为:外荷载为:
应用D’Alembert原理:
2.3
重力的影响
1、考虑重力影响时,结构体系的运动方程与无重力影响时的运动方程完全一样,此时u是由动荷载引起的动力反应。可见在研究结构的动力反应时,可以完全不考虑重力的影响,建立体系的运动方程,直接求解动力荷载作用下的运动方程,即得到结构体系的动力解。2、当需要考虑重力影响时,结构的总位移=静力解+动力解,即应用叠加原理。在结构反应问题中,应用叠加原理可将静力问题(一般是重力问题)和动力问题分开计算,将其结果相加即得到结构的总体反应。3、同时也要注意到,并不是对任何结构动、静力反应问题都可以这样处理,因为在以上推导中,假设弹簧的刚度k为常数,即结构是线弹性的,因此只有对线弹性结构(如果是二维或三维问题,还要加上小变形(位移)的限制)才可以使用叠加原理,将静力、动力问题分开考虑。4、应当注意的是,在以上推导过程中,假设悬挂的弹簧―质点体系只发生竖向振动,在动荷载作用之前,重力被弹簧的弹性变形所平衡,而施加荷载后,重力始终被弹性变形所平衡。如果重力的影响没有预先被平衡,则在施加动力荷载产生进一步变形后,可以产生二阶影响问题,例如P―Δ效应。最简单的例子是倒立摆,当倒立摆产生水平振动后,摆的重力引起的附加弯矩是一个新的量,它并没有预先被平衡,将对体系的动力反应产生影响,这种影响必然反映到结构的运动方程中。2.4地基运动的影响
地基运动问题:结构的动力反应不是由直接作用到结构上的动力引起的,而是由于结构基础的运动引起的。ug——地基位移,是已知的u——相对位移,反映结构形变ut=u+ug——绝对位移。
惯性力:阻尼力:弹性恢复力:外荷载为0
应用D’Alembert原理相对运动方程:
其中:重力和地基运动的影响
以上结合单自由度结构体系给出了不同影响因素下结构运动方程的建立方法,虽然例题极为简单,但包含了最基本的概念和原理。以后会涉及到更复杂的结构体系,例如结构构造复杂、自由度多,包含连续分布的质量,地震多方向(多维)和多点(在结构不同的支承处的地面运动不一致)输入等等,但灵活应用本章介绍的方法都可以得到解决。
2.5例题
例1分析右图所示体系的静力自由度和动力自由度,并利用D’Alembert原理建立体系的运动方程。
[解]:1、体系的自由度静力自由度:体系运动时可以独立改变的(广义)坐标的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水电合同范本简单版2篇
- 挖掘机驾驶员劳动合同 2篇
- 材料采购合同范本
- 发酵酒缸合同范本
- 业务员劳务合同
- 2024年度广告定制发布合同3篇
- 手套合同范本模板
- 简单版装饰装修工程承包合同范本
- 2024年度云计算服务合规性与法律风险评估合同2篇
- 购玉石合同范本
- 销售意向合同范本
- 江苏省扬州树人学校2022年中考一模语文试卷及答案
- 14S501-2 双层井盖图集
- 建筑工程冬期施工规程JGJ/T 104-2011
- 普通话培训 省级普通话测试员
- 2023文化产业促进会工作总结
- 固定资产回收记录单
- 中建临建工程施工方案
- 土方开挖及挖基坑支护安全旁站监理记录表
- DLT664-2008-带电设备红外诊断应用规范
- 苏教版小学数学三年上册《平移与旋转》说课稿(附反思、板书)课件(共29张PPT)
评论
0/150
提交评论