《函数的应用(一)》设计_第1页
《函数的应用(一)》设计_第2页
《函数的应用(一)》设计_第3页
《函数的应用(一)》设计_第4页
《函数的应用(一)》设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的应用(一)【教学目标】1.了解函数模型(如一次函数、二次函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.2.能够利用给定的函数模型或建立确定的函数模型解决实际问题.3.通过建立函数模型解决实际问题,培养数学建模素养.4.借助实际问题中的最值问题,提升数学运算素养.【教学重点】能够利用给定的函数模型或建立确定的函数模型解决实际问题.【教学难点】能够利用给定的函数模型或建立确定的函数模型解决实际问题.【教学过程】新知初探常见的几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)分段函数模型f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(f1x,x∈D1,f2x,x∈D2,……,fnx,x∈Dn))小试身手1.一个矩形的周长是40,则矩形的长y关于宽x的函数解析式为()A.y=20-x,0<x<10 B.y=20-2x,0<x<20C.y=40-x,0<x<10 D.y=40-2x,0<x<20[答案]A2.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是()A.一次函数模型 B.二次函数模型C.分段函数模型 D.无法确定C[由s与t的图象,可知t分4段,则函数模型为分段函数模型.]3.某商店进货单价为45元,若按50元一个销售,能卖出50个;若销售单价每涨1元,其销售量就减少2个,为了获得最大利润,此商品的最佳售价应为每个________元.60[设涨价x元,销售的利润为y元,则y=(50+x-45)(50-2x)=-2x2+40x+250=-2(x-10)2+450,所以当x=10,即销售价为60元时,y取得最大值.]例题讲解一次函数模型的应用【例1】某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2000套 B.3000套C.4000套 D.5000套D[因利润z=12x-(6x+30000),所以z=6x-30000,由z≥0解得x≥5000,故至少日生产文具盒5000套.]方法总结1.一次函数模型的实际应用一次函数模型应用时,本着“问什么,设什么,列什么”这一原则.2.一次函数的最值求解一次函数求最值,常转化为求解不等式ax+b≥0(或≤0),解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.课堂练习1.如图所示,这是某通讯公司规定的打某国际长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的函数关系图象.根据图象填空:①通话2分钟,需要付电话费________元;②通话5分钟,需要付电话费________元;③如果t≥3,则电话费y(元)与通话时间t(分钟)之间的函数关系式为________.①②6③y=(t≥3)[①由图象可知,当t≤3时,电话费都是元.②由图象可知,当t=5时,y=6,需付电话费6元.③易知当t≥3时,图象过点(3,,(5,6),待定系数求得y=(t≥3).]二次函数模型的应用【例2】某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;(3)当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?[思路点拨]本题中平均每天的销售量y(箱)与销售单价x(元/箱)是一个一次函数关系,虽然x∈[50,55],x∈N,但仍可把问题看成一次函数模型的应用问题;平均每天的销售利润w(元)与销售单价x(元/箱)是一个二次函数关系,可看成是一个二次函数模型的应用题.[解](1)根据题意,得y=90-3(x-50),化简,得y=-3x+240(50≤x≤55,x∈N).(2)因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360x-9600(50≤x≤55,x∈N).(3)因为w=-3x2+360x-9600=-3(x-60)2+1200,所以当x<60时,w随x的增大而增大.又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1125.所以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1125元.方法总结二次函数模型的解析式为gx=ax2+bx+ca≠0.在函数建模中,它占有重要的地位.在根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题.二次函数求最值最好结合二次函数的图象来解答.课堂练习2.A,B两城相距100km,在两地之间距A城xkm处D地建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得少于10km,已知每个城市的供电费用与供电距离的平方和供电量之积成正比,比例系数λ=.若A城供电量为20亿度/月,B城为10亿度/月.(1)把A,B两城月供电总费用y(万元)表示成x(km)的函数,并求定义域;(2)核电站建在距A城多远,才能使供电总费用最小.[解](1)由题意设甲城的月供电费用为y1,则y1=λ×20x2.设乙城的月供电费用为y2,则y2=λ×10×(100-x)2,∴甲、乙两城月供电总费用y=λ×20x2+λ×10×(100-x)2.∵λ=,∴y=5x2+eq\f(5,2)(100-x)2(10≤x≤90).(2)由y=5x2+eq\f(5,2)(100-x)2=eq\f(15,2)x2-500x+25000=eq\f(15,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(100,3)))2+eq\f(50000,3),则当x=eq\f(100,3)时,y最小.故当核电站建在距A城eq\f(100,3)km时,才能使供电总费用最小.分段函数模型的应用【例3】某公司生产一种产品,每年投入固定成本万元,此外每生产100件这种产品还需要增加投资万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-eq\f(1,2)t2(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?[解](1)当0<x≤5时,产品全部售出,当x>5时,产品只能售出500件.所以f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(5x-\f(1,2)x2))-+,0<x≤5,,\b\lc\(\rc\)(\a\vs4\al\co1(5×5-\f(1,2)×52))-+,x>5,))即f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(-\f(1,2)x2+-,0<x≤5,,12-,x>5.))(2)当0<x≤5时,f(x)=-eq\f(1,2)x2+-,所以当x=(百件)时,f(x)有最大值,f(x)max=25(万元).当x>5时,f(x)<12-×5=(万元).故当年产量为475件时,当年所得利润最大.方法总结1.分段函数的“段”一定要分得合理,不重不漏.2.分段函数的定义域为对应每一段自变量取值范围的并集.3.分段函数的值域求法:逐段求函数值的范围,最后比较再下结论.课堂练习3.已知A、B两地相距150千米,某人开汽车以60千米/时的速度从A地到B地,在B地停留1小时后再以50千米/时的速度返回A地.(1)把汽车离开A地的距离x(千米)表示为时间t(小时)的函数;(2)求汽车行驶5小时与A地的距离.[解](1)汽车以60千米/时的速度从A地到B地需小时,这时x=60t;当<t≤时,x=150;汽车以50千米/时的速度返回A地需3小时,这时x=150-50(t-.所求函数的解析式为x=eq\b\lc\{\rc\(\a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论