版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,,,折叠使得点落在边上的点处,折痕为.连接、,下列结论:①△是等腰直角三角形;②;③;④.其中正确的个数是()A.1 B.2 C.3 D.42.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=56°,则∠BCD是()A.34° B.44° C.54° D.56°3.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:24.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.25.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±6.如图所示,抛物线y=ax²+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列5个结论中,其中正确的是()①abc>0;②4a+c>0;③方程ax²+bx+c=3两个根是=0,=2;④方程ax²+bx+c=0有一个实数根大于2;⑤当x<0,y随x增大而增大A.4 B.3 C.2 D.17.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是A. B. C. D.8.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣39.下列两个变量成反比例函数关系的是()①三角形底边为定值,它的面积S和这条边上的高线h;②三角形的面积为定值,它的底边a与这条边上的高线h;③面积为定值的矩形的长与宽;④圆的周长与它的半径.A.①④ B.①③ C.②③ D.②④10.计算的结果是()A. B. C. D.11.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.12.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切二、填空题(每题4分,共24分)13.分式方程=1的解为_____14.若=,则的值是_________.15.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.16.如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____.17.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.18.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)三、解答题(共78分)19.(8分)解方程或计算(1)解方程:3y(y-1)=2(y-1)(2)计算:sin60°cos45°+tan30°.20.(8分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.21.(8分)如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.(1)求证:△AED是等腰直角三角形;(2)如图1,已知⊙O的半径为.①求的长;②若D为EB中点,求BC的长.(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.22.(10分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点P从点A出发,沿AB边以2cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1cm/s的速度向点C匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)当PQ∥AC时,求t的值;(2)当t为何值时,△PBQ的面积等于cm2.23.(10分)某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.24.(10分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.25.(12分)互联网“微商”经营已经成为大众创业的一种新途径,某网店准备销售一种多功能旅行背包,计划从厂家以每个50元的价格进货.销售期间发现:销售单价是100元时,每天的销售量是50个,而销售单价每降低1元,每天就可多售出5个,为了增加销售量,尽量让利顾客,当销售单价为多少元时,每天的销售利润达到4000元?26.如图,在⊙O中,,∠ACB=60°,求证∠AOB=∠BOC=∠COA.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质、三角形的面积公式逐个判断即可得.【详解】由折叠的性质得:又在中,即,则是等腰直角三角形,结论①正确由结论①可得:,则结论②正确,则结论③正确如图,过点E作由结论①可得:是等腰直角三角形,由勾股定理得:,则结论④错误综上,正确的结论有①②③这3个故选:C.【点睛】本题考查了折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质等知识点,熟记并灵活运用各定理与性质是解题关键.2、A【分析】根据圆周角定理由AB是⊙O的直径可得∠ADB=90°,再根据互余关系可得∠A=90°-∠∠ABD=34°,最后根据圆周角定理可求解.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=56°,∴∠A=90°-∠ABD=34°,∴∠BCD=∠A=34°,故答案选A.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.解题的关键是正确利用图中各角之间的关系进行计算.3、D【分析】根据题意得出△DEF∽△BCF,进而得出,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵点E是边AD的中点,∴AE=DE=AD,∴.故选D.4、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.5、C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.6、B【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】抛物线开口向下,a<0,对称轴为直线x=1>0,a、b异号,因此b>0,与y轴交点为(0,3),因此c=3>0,于是abc<0,故结论①是不正确的;由对称轴为直线x=−=1得2a+b=0,当x=−1时,y=a−b+c<0,所以a+2a+c<0,即3a+c<0,又a<0,4a+c<0,故结论②不正确;当y=3时,x1=0,即过(0,3),抛物线的对称轴为直线x=1,由对称性可得,抛物线过(2,3),因此方程ax2+bx+c=3的有两个根是x1=0,x2=2;故③正确;抛物线与x轴的一个交点(x1,0),且−1<x1<0,由对称轴为直线x=1,可得另一个交点(x2,0),2<x2<3,因此④是正确的;根据图象可得当x<0时,y随x增大而增大,因此⑤是正确的;正确的结论有3个,故选:B.【点睛】考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.7、C【详解】∵10张卡片的数中能被4整除的数有:4、8,共2个,∴从中任意摸一张,那么恰好能被4整除的概率是故选C8、C【解析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.9、C【分析】根据反比例函数的定义即可判断.【详解】①三角形底边为定值,它的面积S和这条边上的高线h是成正比例关系,故不符合题意;②三角形的面积为定值,它的底边a与这条边上的高线h是反比例函数关系;故符合题意;③面积为定值的矩形的长与宽;是反比例函数关系;故符合题意;④圆的周长与它的半径,是成正比例关系,故不符合题意.故选:C.【点睛】本题考查了反比例函数的解析式,解答本题的关键是根据题意列出函数关系式来进行判断,本题属于基础题型.10、D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:=故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.11、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.12、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.二、填空题(每题4分,共24分)13、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14、.【分析】根据等式的性质,可用a表示b,根据分式的性质可得答案.【详解】解:由=得,b=a,∴,故答案为:.【点睛】本题考查了比例的性质,利用等式的性质得出b=a是解题的关键,又利用了分式的性质.15、4【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC、BC、AB的长,进而根据AC∶CB∶BA=3∶4∶1列出比例式,继而求出x、y的值,进而即可求解△ABC的周长.【详解】∵AC∶CB∶BA=3∶4∶1,设AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,设DE=3k(k>0),则EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周长为4.故答案为4.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.16、π.【分析】连接AC、AC′,作BM⊥AC于M,由菱形的性质得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性质得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧长公式即可得出结果.【详解】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴点C经过的路线长==π故答案为:π【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键.17、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.18、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=x2向左平移3个单位后所得直线解析式为:y=(x+3)2;再向下平移2个单位为:.故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.三、解答题(共78分)19、(1)y1=1,y2=;(2)【分析】(1)先移项,再用提公因式法解方程即可;(2)将三角函数的对应值代入计算即可.【详解】(1)3y(y-1)=2(y-1),,(3y-2)(y-1)=0,y1=1,y2=;(2)sin60°cos45°+tan30°,,=.【点睛】此题考查计算能力,(1)是解方程,解方程时需根据方程的特点选择适合的方法使计算简便;(2)是三角函数值的计算,熟记各角的三角函数值是解题的关键.20、(1)每件衬衫应降价1元.(2)不可能,理由见解析【分析】(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.
(2)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)设每件衬衫应降价x元.
根据题意,得(40-x)(1+2x)=110
整理,得x2-30x+10=0
解得x1=10,x2=1.
∵“扩大销售量,减少库存”,
∴x1=10应略去,
∴x=1.
答:每件衬衫应降价1元.
(2)不可能.理由如下:
令y=(40-x)(1+2x),当y=1600时,(40-x)(1+2x)=1600整理得x2-30x+400=0
∵△=900-4×400<0,方程无实数根.
∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.21、(1)见解析;(2)①;②;(3)【分析】(1)由已知可得△BCD是等腰直角三角形,所以∠CBD=∠EAD=45°,因为∠AEB=90°可证△AED是等腰直角三角形;(2)①已知可得∠EAD=45°,∠EOC=90°,则△EOC是等腰直角三角形,所以CE的弧长=×2×π×=;②由已知可得ED=BD,在Rt△ABE中,(2)2=AE2+(2AE)2,所以AE=2,AD=2,易证△AED∽△BCD,所以BC=;(3)由已知可得AF=AD,过点E作EG⊥AD于G,EG=AD,GF=AD,tan∠EFG=,得出FO=r,在Rt△COF中,FC=r,EF=r,在Rr△EFG中,由勾股定理,求出AD=r,AF=r,所以AC=AF+FC=,CD=BC=4,AC=4+AD,可得r=4+r,解出r即可.【详解】解:(1)∵BC=CD,AB是直径,∴△BCD是等腰直角三角形,∴∠CBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD=45°,∴∠EOC=90°,∴△EOC是等腰直角三角形,∵⊙O的半径为,∴CE的弧长=×2×π×=,故答案为:;②∵D为EB中点,∴ED=BD,∵AE=ED,在Rt△ABE中,(2)2=AE2+(2AE)2,∴AE=2,∴AD=2,∵ED=AE,CD=BC,∠AED=∠BCD=90°,∴△AED∽△BCD,∴BC=,故答案为:;(3)∵AF:FD=7:3,∴AF=AD,过点E作EG⊥AD于G,∴EG=AD,∴GF=AD,∴tan∠EFG=,∴==,∴FO=r,在Rt△COF中,FC=r,∴EF=r,在Rt△EFG中,(r)2=(AD)2+(AD)2,∴AD=r,∴AF=r,∴AC=AF+FC=r,∵CD=BC=4,∴AC=4+AD=4+r,∴r=4+r,∴r=,故答案为:.【点睛】本题考查了圆的基本性质,等腰直角三角形的判定和性质,相似三角形的判定和性质,勾股定理的应用,弧长公式的计算,锐角三角函数定义的应用,掌握相关图形的性质和应用是解题的关键.22、(1)t=;(2)当t为2s或3s时,△PBQ的面积等于cm2.【分析】(1)根据PQ∥AC得到△PBQ∽△ABC,列出比例式即可求解;(2)解法一:过点Q作QE⊥AB于E,利用△BQE∽△BCA,得到,得到QE=t,根据S△PBQ=BP·QE=列出方程即可求解;解法二:过点P作PE⊥BC于E,则PE∥AC,得到△BPE∽△BAC,则,求出PE=(10-2t).,利用S△PBQ=BQ·PE=列出方程即可求解.【详解】(1)由题意得,BQ=tcm,AP=2cm,则BP=(10—2t)cm在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm∵PQ∥AC,∴△PBQ∽△ABC,∴,即,解得t=.(2)解法一:如图3,过点Q作QE⊥AB于E,则∠QEB=∠C=90°.∵∠B=∠B,∴△BQE∽△BCA,∴,即,解得QE=t.∴S△PBQ=BP·QE=,即·(10-2t)·t=.整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ的面积等于cm2.解法二:过点P作PE⊥BC于E,则PE∥AC(如图4).∵PE∥AC.∴△BPE∽△BAC,∴,即,解得PE=(10-2t).∴S△PBQ=BQ·PE=,即·t·(10-2t)=整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3.∵0<t<5,∴当t为2s或3s时,△PBQ的面积等于cm2.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理、适当构造辅助线进行求解.23、20%【分析】根据题意设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解即可.【详解】解:设该市政府从2017年到2019年对校舍建设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 济宁学院《钢琴》2021-2022学年第一学期期末试卷
- 二零二四年度特许经营权代理合同2篇
- 房产公司2024年度云计算服务合同2篇
- 2024年度建筑用沙子市场拓展合同
- 2024年电力营销个人工作总结
- 车间安全培训总结
- 2024年度商品混凝土加工供应链优化与协调合同2篇
- 造血干细胞主题活动
- 石台生态养殖观光园鳄鱼、鳄鱼龟、梅花鹿项目建设可行性研究报告
- 输液护理小创新
- 2024秋国开电大《马克思主义基本原理概论》大作业试卷A参考答案
- 复旦大学(张奇):2023年大语言模型评测报告
- 9.2 化学合成材料 同步练习
- 光伏屋顶荷载检测合同模板
- 音乐教育者招聘合同范本
- 山西省大同市2024-2025学年九年级上学期11月期中数学试题(无答案)
- 企业2024年年度目标规划
- 安徽省卓越县中联盟天一大联考2024-2025学年高一上学期11月期中考试化学试题(无答案)
- 金矿地质勘探合同范本
- 学校班主任培训
- 医院培训课件:《新进护士职业规划》
评论
0/150
提交评论