




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市平度中庄中学2023年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为()A.10π B.11π C.12π D.13π参考答案:C【考点】由三视图求面积、体积.【分析】由题意可知,几何体是由一个球和一个圆柱组合而成的,分别求表面积即可.【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,球的半径为1,圆柱的高为3,底面半径为1.所以球的表面积为4π×12=4π.圆柱的侧面积为2π×3=6π,圆柱的两个底面积为2π×12=2π,所以该几何体的表面积为4π+2π+6π=12π.故选C.2.已知直线过定点(-1,1),则“直线的斜率为0”是“直线与圆相切”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件高考资源参考答案:A略3.某高中体育小组共有男生24人,其50m跑成绩记作ai(i=1,2,…,24),若成绩小于6.8s为达标,则如图所示的程序框图的功能是()A.求24名男生的达标率 B.求24名男生的不达标率C.求24名男生的达标人数 D.求24名男生的不达标人数参考答案:B【考点】程序框图.【分析】由题意,从成绩中搜索出大于6.8s的成绩,计算24名中不达标率.【解答】解:由题意可知,k记录的是时间超过6.8s的人数,而i记录是的参与测试的人数,因此表示不达标率;故选B.【点评】本题考查程序框图的理解以及算法功能的描述.4.下列说法错误的是()A.回归直线过样本点的中心B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C.在回归直线方程中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位D.对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越小参考答案:D分析:A.两个变量的相关关系不一定是线性相关;B.两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.正确.详解:A.两个变量的相关关系不一定是线性相关;也可以是非线性相关;B.两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.正确.故选D.点睛:本题考查了两个变量的线性相关关系的意义,线性回归方程,相关系数,以及独立性检验等,是概念辨析问题.5.若点在函数的图象上,则的值为(
)
A.
B.
C.
D.参考答案:C6.设曲线在点(0,0)处的切线方程为y=2x,则=()A.0
B.1
C.2
D.3参考答案:D7.从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是(
)A.
B.
C.
D.参考答案:A8.在中,角A,B,C所对的边分别为a,b,c,若,则的值是(
)
(A)
(B)
(C)
(D)参考答案:C9.(5分)设等差数列{an}的前n项和为Sn,且满足S20>0,S21<0,则中最大的项为()A.B.C.D.参考答案:B【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:由等差数列的性质和求和公式易得a10+a11>0且a11<0,可得n≤10时,S10最大,而a10最小,故最大.解:由题意显然公差d<0,∵S20==10(a1+a20)>0,∴a1+a20>0,则a10+a11>0;同理由S21<0可得a1+a21<0,∴a11<0,结合a10+a11>0可得a10>0,∴n≤10时,S10最大,而a10最小,∴最大.故选:B.【点评】:本题考查了等差数列的性质,考查了等差数列的前n项和,属中档题.10.在ΔABC中,若(tanB+tanC)=tanBtanC?1,则sin2A=(
)A、?
B、
C、?
D、参考答案:B试题分析:由得,又因为为三角形内角,所以,,所以,故选B.考点:三角恒等变换.二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在R上的奇函数,满足,且在区间上是增函数,若方程在区间上有四个不同的根,则
.参考答案:-812.已知函数的图像与函数的图像恰有两个交点,则实数的取值范围是
.参考答案:13.一个正六面体的各个面和一个正八面体的各个面都是边长为a的正三角形,这样的两个多面体的内切球的半径之比是一个最简分数,那么积m?n是
.参考答案:6【考点】简单组合体的结构特征.【专题】计算题;作图题;转化思想.【分析】画出正六面体、正八面体及内切球,设出半径r1与r2,利用体积求出两个半径的比,然后得到m?n.【解答】解:设六面体与八面体的内切球半径分别为r1与r2,再设六面体中的正三棱锥A﹣BCD的高为h1,八面体中的正四棱锥M﹣NPQR的高为h2,如图所示则h1=a,h2=\frac{\sqrt{2}}{2}a.∵V正六面体=2?h1?S△BCD=6?r1?S△ABC,∴r1=h1=\frac{\sqrt{6}}{9}a.又∵V正八面体=2?h2?S正方形NPQR=8?r2?S△MNP,a3=2r2a2,r2=\frac{\sqrt{6}}{6}a,于是是最简分数,即m=2,n=3,∴m?n=6.【点评】本题考查简单几何体的结构特征,考查空间想象能力,逻辑思维能力,是难题.14.函数,若方程恰有四个不相等的实数根,则实数的取值范围是____________.参考答案:
【知识点】函数的零点与方程根的关系.B9解析:方程f(x)=mx﹣恰有四个不相等的实数根可化为函数与函数y=mx﹣有四个不同的交点,作函数与函数y=mx﹣的图象如下,由题意,C(0,﹣),B(1,0);故kBC=,当x>1时,f(x)=lnx,f′(x)=;设切点A的坐标为(x1,lnx1),则=;解得,x1=;故kAC=;结合图象可得,实数m的取值范围是.故答案为:.【思路点拨】方程f(x)=mx﹣恰有四个不相等的实数根可化为函数与函数y=mx﹣有四个不同的交点,作函数与函数y=mx﹣的图象,由数形结合求解.15.在球O的内接四面体ABCD中,且,则球O的表面积是_______________参考答案:略16.正方体的棱长为,是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),为正方体表面上的动点,当弦的长度最大时,的最大值是
.参考答案:2因为是它的内切球的一条弦,所以当弦经过球心时,弦的长度最大,此时.以为原点建立空间直角坐标系如图.根据直径的任意性,不妨设分别是上下底面的中心,则两点的空间坐标为,设坐标为,则,,所以,即.因为点为正方体表面上的动点,,所以根据的对称性可知,的取值范围与点在哪个面上无关,不妨设,点在底面内,此时有,所以此时,,所以当时,,此时最小,当但位于正方形的四个顶点时,最大,此时有,所以的最大值为2.17.若数列满足,则
.参考答案:本题考查等比数列.因为,所以,;,将代入得:,即,即数列为等比数列,所以;所以.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知c>0,设p:函数y=cx在R上单调递减;q:函数g(x)=lg(2cx2+2x+1)的定义域为R,若“p且q”为假命题,“p或q”为真命题,求c的取值范围.参考答案:【考点】复合命题的真假.【分析】先求出命题P、命题q为真命题时c的范围,再根据P∧Q为假命题,P∨Q为真命题,则“p”、“q”中一个为真命题、一个为假命题.然后再分类讨论即可求解.【解答】解:∵如果P∧Q为假命题,P∨Q为真命题,命题P为真命题得:0<c<1;命题q为真命题,u=2cx2+2x+1>0恒成立,∴△=4﹣8c<0?c>,根据复合命题真值表得:命题p、q中一个为真命题、一个为假命题①若p为真命题,q为假命题则0<c<1且0<c≤,即0<c≤.②若p为假命题,q为真命题则c≥1且c>,即c≥1,综合①②得:c≥1或0<c.19.(本小题满分12分)
某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示).如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价参考答案:解:设污水处理池的宽为x米,则长为米,则总造价
当且仅当当长为16.2米,宽为10米时吗,总造价最低,,最低总造价为38880元。略20.函数(1)若是增函数,求a的取值范围;(2)求上的最大值.参考答案:解析:(1)综上,a的取值范围是(2)①②当21.(16分)已知直线l与圆锥曲线C相交于两点A,B,与x轴,y轴分别交于D、E两点,且满足(1)已知直线l的方程为y=2x﹣4,抛物线C的方程为y2=4x,求λ1+λ2的值;(2)已知直线l:x=my+1(m>1),椭圆C:=1,求的取值范围;(3)已知双曲线C:,求点D的坐标.参考答案:考点:直线与圆锥曲线的综合问题;抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)通过直线l的方程可得D、E坐标,将y=2x﹣4代入y2=4x可得点A、B坐标,利用、,计算即可;(2)通过联立x=my+1(m>1)与=1,利用韦达定理、、,计算即得结论;(3)通过设直线l的方程并与双曲线C方程联立,利用韦达定理、,,计算即可.解答: 解:(1)将y=2x﹣4代入y2=4x,求得点A(1,﹣2),B(4,4),又∵D(2,0),E(0,﹣4),且,∴(1,2)=λ1(1,2)=(λ1,2λ1),即λ1=1,同理由,可得λ2=﹣2,∴λ1+λ2=﹣1;(2)联立x=my+1(m>1)与=1,消去x可得:(2+m2)y2+2my﹣1=0,由韦达定理可得:y1+y2=﹣,y1y2=﹣,∵D(1,0),E(0,﹣),且,∴y1+=﹣λ1y1,∴λ1=﹣(1+),同理由,可得y2+=﹣λ2y2,∴λ2=﹣(1+),∴λ1+λ2=﹣(1+)﹣(1+)=﹣2﹣=﹣2﹣=﹣4,∴=﹣==,∵m>1,∴点A在椭圆上位于第三象限的部分上运动,由分点的性质可得λ1∈(,0),∴∈(﹣∞,﹣2);(3)设直线l的方程为:x=my+t,代入双曲线C方程,消去x得:(﹣3+m2)y2+2mty+(t2﹣3)=0,由韦达定理可得:y1+y2=﹣,y1y2=﹣,∴+=﹣,由,可得:﹣(λ1+λ2)=2+?(+),∵λ1+λ2=6,∴2+?(﹣)=﹣6,解得t=±2,∴点D(±2,0);当直线l与x轴重合时,λ1=﹣,λ2=或者λ1=,λ2=﹣,∴都有λ1+λ2==6也满足要求,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士职业述职报告
- 2025届山西省霍州市煤电第一中学高三下学期第五次调研考试化学试题含解析
- 2025年存包柜项目发展计划
- 山东省潍坊市安丘市2023-2024学年三年级下学期期中数学试卷(含答案)
- 双体体系培训
- 护理专业德育答辩
- 2025年控制器及引爆、爆炸器项目合作计划书
- 北京市平谷区市级名校2025届高三3月份模拟考试化学试题含解析
- 制定创新的市场渠道策略
- 吉林省吉化一中2025届高三第二次模拟考试化学试卷含解析
- T-CSCP 0019-2024 电网金属设备防腐蚀运维诊断策略技术导则
- 2025中考道德与法治核心知识点+易错易混改错
- 授权独家代理商合作协议2025年
- 《技术分析之均线》课件
- 小儿高热惊厥护理查房
- 2025年度全款文化演出门票购买合同4篇
- 临床基于高级健康评估的高血压Ⅲ级合并脑梗死患者康复个案护理
- 2025年厦门建发股份有限公司招聘笔试参考题库含答案解析
- 2025年中国EAM系统行业发展前景预测及投资战略研究报告
- 精准医疗复合手术室
- 《基于三维荧光技术的水环境污染源深度溯源技术规范》
评论
0/150
提交评论