版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3Forecasting3-2LearningObjectivesListtheelementsofagoodforecast.Outlinethestepsintheforecastingprocess.Describeatleastthreequalitativeforecastingtechniquesandtheadvantagesanddisadvantagesofeach.Compareandcontrastqualitativeandquantitativeapproachestoforecasting.3-3LearningObjectivesBrieflydescribeaveragingtechniques,trendandseasonaltechniques,andregressionanalysis,andsolvetypicalproblems.Describetwomeasuresofforecastaccuracy.Describetwowaysofevaluatingandcontrollingforecasts.Identifythemajorfactorstoconsiderwhenchoosingaforecastingtechnique.3-4FORECAST:Astatementaboutthefuturevalueofavariableofinterestsuchasdemand.Forecastingisusedtomakeinformeddecisions.Long-rangeShort-range3-5ForecastsForecastsaffectdecisionsandactivitiesthroughoutanorganizationAccounting,financeHumanresourcesMarketingMISOperationsProduct/servicedesign3-6AccountingCost/profitestimatesFinanceCashflowandfundingHumanresourcesHiring/recruiting/trainingMarketingPricing,promotion,strategyMISIT/ISsystems,servicesOperationsSchedules,MRP,workloadsProduct/servicedesignNewproductsandservicesUsesofForecastsIseethatyouwill
getanAthissemester.3-7Assumescausalsystem
past==>futureForecastsrarelyperfectbecauseofrandomnessForecastsmoreaccuratefor
groupsvs.individualsForecastaccuracydecreases
astimehorizonincreasesFeaturesofForecasts3-8ElementsofaGoodForecastTimelyAccurateReliableMeaningfulWrittenEasytouse3-9StepsintheForecastingProcessStep1DeterminepurposeofforecastStep2EstablishatimehorizonStep3SelectaforecastingtechniqueStep4Obtain,cleanandanalyzedataStep5MaketheforecastStep6Monitortheforecast“Theforecast”3-10TypesofForecastsJudgmental:usessubjectiveinputsTimeseries:
useshistoricaldata,assumingthefuturewillbelikethepastAssociativemodels:
usesexplanatoryvariablestopredictthefuture3-11JudgmentalForecastsExecutiveopinionsSalesforceopinionsConsumersurveysOutsideopinionDelphimethodOpinionsofmanagersandstaffAchievesaconsensusforecast3-12TimeSeriesForecastsTrend:long-termmovementindataSeasonality:short-termregularvariationsindataCycles:wavelikevariationsofmorethanoneyear’sdurationIrregularvariations:causedbyunusualcircumstancesRandomvariations:causedbychance3-13ForecastVariationsTrendIrregular
variationSeasonalvariations908988Figure3.1Cycles3-14NaiveForecastsUh,givemeaminute....Wesold250wheelslastweek....Now,nextweekweshouldsell....Theforecastforanyperiodequalsthepreviousperiod’sactualvalue.3-15SimpletouseVirtuallynocostQuickandeasytoprepareDataanalysisisnonexistentEasilyunderstandableCannotprovidehighaccuracyCanbeastandardforaccuracyNaiveForecasts3-16StabletimeseriesdataF(t)=A(t-1)SeasonalvariationsF(t)=A(t-n)DatawithtrendsF(t)=A(t-1)+(A(t-1)––A(t-2))UsesofNaiveForecasts3-17TechniquesforAveragingMovingaverageWeightedmovingaverageExponentialsmoothing3-18MovingAveragesMovingaverage:Atechniquethataveragesanumberofrecentactualvalues,updatedasnewvaluesbecomeavailable.Weightedmovingaverage:Morerecentvaluesinaseriesaregivenmoreweightincomputingtheforecast.Ft=MAn=
nAt-n
+…At-2+At-1Ft=WMAn=
nwnAt-n
+…wn-1At-2+w1At-13-19SimpleMovingAverageActualMA3MA5Ft=MAn=
nAt-n
+…At-2+At-13-20ExponentialSmoothingPremise:Themostrecentobservationsmighthavethehighestpredictivevalue.Therefore,weshouldgivemoreweighttothemorerecenttimeperiodswhenforecasting.Ft=Ft-1+(At-1-Ft-1)3-21ExponentialSmoothingWeightedaveragingmethodbasedonpreviousforecastplusapercentageoftheforecasterrorA-Fistheerrorterm,isthe%feedbackFt=Ft-1+(At-1-Ft-1)3-22Example3:ExponentialSmoothing3-23PickingaSmoothingConstant.1.4Actual3-24CommonNonlinearTrendsParabolicExponentialGrowthFigure3.53-25LinearTrendEquationFt=Forecastforperiodtt=Specifiednumberoftimeperiodsa=ValueofFtatt=0b=SlopeofthelineFt=a+bt012345tFt3-26Calculatingaandbb=
n(ty)-
tynt2
-(t)2a=
y-btn3-27LinearTrendEquationExample3-28LinearTrendCalculationy=143.5+6.3ta=
812-6.3(15)5
=b=
5(2499)-15(812)5(55)-225
=
12495-12180275-225
=
6.3143.5
3-29TechniquesforSeasonalitySeasonalvariationsRegularlyrepeatingmovementsinseriesvaluesthatcanbetiedtorecurringeventsSeasonalrelativePercentageofaverageortrendCenteredmovingaverageAmovingaveragepositionedatthecenterofthedatathatwereusedtocomputeit3-30AssociativeForecastingPredictorvariables:usedtopredictvaluesofvariableinterestRegression:techniqueforfittingalinetoasetofpointsLeastsquaresline:minimizessumofsquareddeviationsaroundtheline3-31LinearModelSeemsReasonableAstraightlineisfittedtoasetofsamplepoints.Computed
relationship3-32LinearRegressionAssumptionsVariationsaroundthelinearerandomDeviationsaroundthelinenormallydistributedPredictionsarebeingmadeonlywithintherangeofobservedvaluesForbestresults:AlwaysplotthedatatoverifylinearityCheckfordatabeingtime-dependentSmallcorrelationmayimplythatothervariablesareimportant3-33ForecastAccuracyError:differencebetweenactualvalueandpredictedvalueMeanAbsoluteDeviation(MAD)AverageabsoluteerrorMeanSquaredError(MSE)AverageofsquarederrorMeanAbsolutePercentError(MAPE)Averageabsolutepercenterror3-34MAD,MSE,andMAPEMAD=ActualforecastnMSE=
Actualforecast)-12n(MAPE=
Actualforecastn/Actual*100)(3-35MAD,MSE,andMAPEMADEasytocomputeWeightserrorslinearlyMSESquareserrorMoreweighttolargeerrorsMAPEPutserrorsinperspective3-36Example103-37ControllingtheForecastControlchartAvisualtoolformonitoringforecasterrorsUsedtodetectnon-randomnessinerrorsForecastingerrorsareincontrolifAllerrorsarewithinthecontrollimitsNopatterns,suchastrendsorcycles,arepresent3-38SourcesofForecastErrorsModelmaybeinadequateIrregularvariationsIncorrectuseofforecastingtechnique3-39TrackingSignalTrackingsignal=
(Actual-forecast)MADTrackingsignalRatioofcumulativeerrortoMADBias:Persistenttend
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装饰吊灯施工方案
- 防静电木地板施工方案
- 家具搬迁施工方案
- 大数据在网站营销中的应用-深度研究
- 互动式教学与课程成效-深度研究
- 互联网法律风险防控策略-深度研究
- 机器人手术效率分析-深度研究
- 保险数据隐私保护-深度研究
- 智能摩托车智能语音交互-深度研究
- 人工智能在知识产权法中的角色-深度研究
- 《天润乳业营运能力及风险管理问题及完善对策(7900字论文)》
- 医院医学伦理委员会章程
- xx单位政务云商用密码应用方案V2.0
- 农民专业合作社财务报表(三张报表)
- 动土作业专项安全培训考试试题(带答案)
- 大学生就业指导(高职就业指导课程 )全套教学课件
- 死亡病例讨论总结分析
- 第二章 会展的产生与发展
- 空域规划与管理V2.0
- JGT266-2011 泡沫混凝土标准规范
- 商户用电申请表
评论
0/150
提交评论