版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.方程x2﹣5=0的实数解为()A. B. C. D.±52.下列图象能表示y是x的函数的是()A. B.C. D.3.方程的解是()A. B., C., D.4.已知方程的两根为,则的值是()A.1 B.2 C.-2 D.45.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm6.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是()A. B. C. D.7.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是A.24 B.24或 C.48或 D.8.如图,BD是⊙O的直径,圆周角∠A=30,则∠CBD的度数是()A.30 B.45 C.60 D.809.下列判断错误的是()A.有两组邻边相等的四边形是菱形 B.有一角为直角的平行四边形是矩形C.对角线互相垂直且相等的平行四边形是正方形 D.矩形的对角线互相平分且相等10.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大11.已知线段,是线段的黄金分割点,则的长度为()A. B. C.或 D.以上都不对12.如图,点D,E分别在△ABC的边AB,AC上,且DE//BC,若AD=2,DB=1,AC=6,则AE等于()A.2 B.3 C.4 D.5二、填空题(每题4分,共24分)13.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图(1)位置,第二次旋转至图(2)位置…,则正方形铁片连续旋转2018次后,点P的纵坐标为_________.14.抛物线的对称轴为__________.15.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.16.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括1).17.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.18.已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是_____.三、解答题(共78分)19.(8分)根据要求画出下列立体图形的视图.20.(8分)如图,在中,点是弧的中点,于,于,求证:.21.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.22.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.23.(10分)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中为下水管道口直径,为可绕转轴自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径,为检修时阀门开启的位置,且.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达位置时,在点处测得俯角,若此时点恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)24.(10分)某宾馆有客房间供游客居住,当每间客房的定价为每天元时,客房恰好全部住满;如果每间客房每天的定价每增加元,就会减少间客房出租.设每间客房每天的定价增加元,宾馆出租的客房为间.求:关于的函数关系式;如果某天宾馆客房收入元,那么这天每间客房的价格是多少元?25.(12分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.26.如图,平面直角坐标系中,点、点在轴上(点在点的左侧),点在第一象限,满足为直角,且恰使∽△,抛物线经过、、三点.(1)求线段、的长;(2)求点的坐标及该抛物线的函数关系式;(3)在轴上是否存在点,使为等腰三角形?若存在,求出所有符合条件的点的坐标,若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】利用直接开平方法求解可得.【详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【点睛】本题考查解方程,熟练掌握计算法则是解题关键.2、D【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】A.如图,,对于该x的值,有两个y值与之对应,不是函数图象;B.如图,,对于该x的值,有两个y值与之对应,不是函数图象;C.如图,对于该x的值,有两个y值与之对应,不是函数图象;D.对每一个x的值,都有唯一确定的y值与之对应,是函数图象.故选:D.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3、B【分析】用因式分解法求解即可得到结论.【详解】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:,.故选:B.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.4、A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x1+x2,x1•x2,代入求出即可.【详解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根与系数的关系得:x1+x2,x1•x2,所以x1+x1x2+x2()=1.故选:A.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.5、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.6、D【解析】试题分析:分别对A、B、C、D四个选项进行一一验证,令y=1,转化为一元二次方程,根据根的判别式来判断方程是否有根.A、令y=1,得x2=1,△=1-4×1×1=1,则函数图形与x轴没有两个交点,故A错误;B、令y=1,得x2+4=1,△=1-4×1×1=-4<1,则函数图形与x轴没有两个交点,故B错误;C、令y=1,得3x2-2x+5=1,△=4-4×3×5=-56<1,则函数图形与x轴没有两个交点,故C错误;D、令y=1,得3x2+5x-1=1,△=25-4×3×(-1)=37>1,则函数图形与x轴有两个交点,故D正确;故选D.考点:本题考查的是抛物线与x轴的交点点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.7、B【分析】由,可利用因式分解法求得x的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.【详解】∵,∴(x−6)(x−10)=0,解得:x1=6,x2=10,当x=6时,则三角形是等腰三角形,如图①,AB=AC=6,BC=8,AD是高,∴BD=4,AD=,∴S△ABC=BC⋅AD=×8×2=8;当x=10时,如图②,AC=6,BC=8,AB=10,∵AC2+BC2=AB2,∴△ABC是直角三角形,∠C=90°,S△ABC=BC⋅AC=×8×6=24.∴该三角形的面积是:24或8.故选B.【点睛】此题考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解题关键在于利用勾股定理进行计算.8、C【解析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【详解】解:如图,连接CD,∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故选C.【点睛】本题利用了直径所对的圆周角是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A.有两组邻边相等的四边形不一定是菱形,故该选项错误;B.有一角为直角的平行四边形是矩形,故该选项正确;C.对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D.矩形的对角线互相平分且相等,故该选项正确;故选:A.【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键.10、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.11、C【分析】根据黄金分割公式即可求出.【详解】∵线段,是线段的黄金分割点,当,∴;当,∴,∴.故选:C.【点睛】此题考查黄金分割的公式,熟记公式是解题的关键.12、C【分析】根据平行线分线段成比例定理,列出比例式求解,即可得到AE的长.【详解】解:∵DE//BC∴AE:AC=AD:AB,∵AD=2,DB=1,AC=6,∴,∴AE=4,故选:C.【点睛】本题考查了平行线分线段成比例定理,注意线段之间的对应关系.二、填空题(每题4分,共24分)13、1【分析】由旋转方式和正方形性质可知点P的位置4次一个循环,首先根据旋转的性质求出P1~P5的坐标,探究规律后,再利用规律解决问题.【详解】解:∵顶点A的坐标为(3,0),点P(1,2),∴第一次旋转90°后,对应的P1(5,2),
第二次P2(8,1),
第三次P3(10,1),
第四次P4(13,2),
第五次P5(17,2),
…
发现点P的位置4次一个循环,
∵2018÷4=504余2,
P2018的纵坐标与P2相同为1,故答案为:1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.14、【分析】根据抛物线的解析式利用二次函数的性质,即可找出抛物线的对称轴,此题得解.【详解】解:∵抛物线的解析式为,
∴抛物线的对称轴为直线x=故答案为:.【点睛】本题考查二次函数的性质,解题的关键是明确抛物线的对称轴是直线x=.15、【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:.故答案为.点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.16、9或2或3.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为9或2或3.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.17、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:
红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.
故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.18、且.【详解】∵关于x的一元二次方程(m﹣1)1x1+(1m+1)x+1=0有两个不相等的实数根,∴△=b1﹣4ac>0,即(1m+1)1﹣4×(m﹣1)1×1>0,解这个不等式得,m>,又∵二次项系数是(m﹣1)1≠0,∴m≠1故M得取值范围是m>且m≠1.故答案为m>且m≠1.考点:根的判别式三、解答题(共78分)19、答案见解析.【分析】根据主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,即可得到结果.【详解】解:如图所示:【点睛】本题考查几何体的三视图,作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.20、证明见解析.【分析】连接,根据在同圆中,等弧所对的圆心角相等即可证出,然后根据角平分线的性质即可证出结论.【详解】证明:连接,∵点是弧的中点,∴,∴OC平分∠AOB∵,,∴【点睛】此题考查的是圆的基本性质和角平分线的性质,掌握在同圆中,等弧所对的圆心角相等和角平分线的性质是解决此题的关键.21、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.22、(1);(2)【分析】(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23、(1);(2)【分析】(1)根据题意即可得到结论;
(2)根据余角的定义得到∠BAO=22.5°,根据等腰三角形的性质得到∠BAO=∠ABO=22.5°,由三角形的外角的性质得到∠BOP=45°,解直角三角形即可得到结论.【详解】解:(1)阀门被下水道的水冲开与被河水关闭过程中,.(2)∵,,∴∵,∴,∴.如图,过点作于点,在中,∵,∴,∴.所以,此时下水道内水的深度约为.【点睛】此题考查了俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.24、(1)y=-x+200;(2)这天的每间客房的价格是元或元.【解析】(1)根据题意直接写出函数关系式,然后整理即可;(2)用每间房的收入(180+x),乘以出租的房间数(-x+200)等于总收入列出方程求解即可.【详解】(1)设每间客房每天的定价增加x元,宾馆出租的客房为y间,根据题意,得:y=200-4×,∴y=-x+200;(2)设每间客房每天的定价增加x元,根据题意,得(180+x)(-x+200)=38400,整理后,得x2-320x+6000=0,解得x1=20,x2=300,当x=20时,x+180=200(元),当x=300时,x+180=480(元),答:这天的每间客房的价格是200元或480元.【点睛】本题主要考查一元二次方程的应用,列一元二次方程,用因式分解法解一元二次方程,解题关键在于根据题意准确列出一元二次方程.25、(1)详见解析;(2)①1;②﹣1.【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025正式铁路运输代理合同模板
- 2025厂房租赁合同版
- 上海思博职业技术学院《设计史》2023-2024学年第一学期期末试卷
- 2025订餐服务合同参考范文
- 冰球教练述职报告范文
- 危险因素报告范文大全
- 上海师范大学《化工安全与环保》2023-2024学年第一学期期末试卷
- 上海思博职业技术学院《刑法案例研讨》2023-2024学年第一学期期末试卷
- 课题申报书:高校思想政治理论课提升大学生历史自信的机制与路径研究
- 课题申报书:非洲区域性国际组织语言政策研究
- 2024年工贸行业安全知识考试题库500题(含答案)
- 2024版国开电大法学本科《合同法》历年期末考试案例分析题题库
- 产妇产后心理障碍的原因分析及心理护理措施
- T-ZJASE 024-2023 呼吸阀定期校验规则
- T-SHNA 0004-2023 有创动脉血压监测方法
- 提高学生学习策略的教学方法
- 小学开学第一课《筑梦新起点 一起向未来》课件
- 客服招聘策划方案
- 发掘无限潜能成就最好的自己主题班会课件
- 主动呼吸循环技术方案
- 医院能源管理平台建设方案合集
评论
0/150
提交评论