2022-2023学年河南省郑州八中学九年级数学第一学期期末经典模拟试题含解析_第1页
2022-2023学年河南省郑州八中学九年级数学第一学期期末经典模拟试题含解析_第2页
2022-2023学年河南省郑州八中学九年级数学第一学期期末经典模拟试题含解析_第3页
2022-2023学年河南省郑州八中学九年级数学第一学期期末经典模拟试题含解析_第4页
2022-2023学年河南省郑州八中学九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6 B.x=﹣ C.x1=6,x2=﹣ D.x1=﹣6,x2=2.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是()A.n B.n-1C.4n D.4(n-1)3.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定()A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相离C.与x轴相离,与y轴相切 D.与x轴相离,与y轴相离4.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法5.如图,在△ABC中,点D在BC上一点,下列条件中,能使△ABC与△DAC相似的是()

A.∠BAD=∠C B.∠BAC=∠BDA C.AB2=BD∙BC D.AC2=CD∙CB6.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣57.已知2a=3b(b≠0),则下列比例式成立的是()A.= B. C. D.8.要得到抛物线,可以将()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度9.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限10.不等式的解集在数轴上表示正确的是()A. B.C. D.11.海南渔民从事海洋捕捞已有上千年历史,南海是海南渔民的“祖宗海”,目前海南共有约25万人从事渔业生产.这个数据用科学记数法表示为()A.2.5×106人 B.25×104人 C.2.5×104人 D.2.5×105人12.图中信息是小明和小华射箭的成绩,两人都射了10箭,则射箭成绩的方差较大的是()A.小明 B.小华 C.两人一样 D.无法确定二、填空题(每题4分,共24分)13.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.14.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________.15.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.16.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.17.如图,反比例函数的图像过点,过点作轴于点,直线垂直线段于点,点关于直线的对称点恰好在反比例函数的图象上,则的值是__________.18.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.三、解答题(共78分)19.(8分)“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。某市为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投入7.2亿元资金用于保障性住房建设.(1)求该市这两年投入资金的年平均增长率.(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?20.(8分)综合与实践在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.探究展示:勤奋小组很快找到了点、的位置.如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.问题解决:(1)按勤奋小组的这种折叠方式,的长度为.(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.(3)在(2)的条件下,求出的长.21.(8分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.22.(10分)如图,在边长为的正方形中,点是射线上一动点(点不与点重合),连接,点是线段上一点,且,连接.求证:;求证:;直接写出的最小值.23.(10分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.24.(10分)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,是的完美分割线,且,则的度数是如图2,在中,为角平分线,,求证:为的完美分割线.如图2,中,是的完美分割线,且是以为底边的等腰三角形,求完美分割线的长.26.某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)(1)试求与之间的函数表达式.(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x(3x+2)=6(3x+2),∴(x﹣6)(3x+2)=0,∴x=6或x=,故选:C.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.2、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和.【详解】解:如图示,由分别过点A1、A2、A3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的,即阴影部分的面积是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.【点睛】此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.3、B【分析】本题应将该点的横纵坐标分别与半径对比,大于半径时,则坐标轴与该圆相离;若等于半径时,则坐标轴与该圆相切.【详解】∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选B.【点睛】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.4、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.5、D【解析】根据相似三角形的判定即可.【详解】△ABC与△DAC有一个公共角,即∠ACB=∠DCA,要使△ABC与△DAC相似,则还需一组角对应相等,或这组相等角的两边对应成比例即可,观察四个选项可知,选项D中的AC即ACCD=CBAC,正好是故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题关键.6、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.7、B【分析】根据等式的性质,可得答案.【详解】解:A、等式的左边除以4,右边除以9,故A错误;B、等式的两边都除以6,故B正确;C、等式的左边除以2b,右边除以,故C错误;D、等式的左边除以4,右边除以b2,故D错误;故选:B.【点睛】本题考查了比例的性质,利用了等式的性质2:等式的两边都乘以或除以同一个不为零的数或整式,结果不变.8、C【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=(x-1)2+1的顶点坐标为(1,1),y=x2的顶点坐标为(0,0),

∴将抛物线y=x2向右平移1个单位,再向上平移1个单位,可得到抛物线y=(x-1)2+1.

故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.9、C【分析】根据反比例函数中k0,图像必过二、四象限即可解题.【详解】解:∵-10,根据反比例函数性质可知,反比例函数y=﹣的图象在第二、四象限,故选C.【点睛】本题考查了反比例函数的图像和性质,属于简单题,熟悉反比例函数的性质是解题关键.10、B【解析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:,移项得:,合并同类项得:,系数化为1得,,在数轴上表示为:故选:B.【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11、D【分析】对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【详解】25万人=2.5×105人.故选D.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、B【分析】根据图中的信息找出波动性小的即可.【详解】解:根据图中的信息可知,小明的成绩波动性小,则这两人中成绩稳定的是小明;

故射箭成绩的方差较大的是小华,

故选:B.【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每题4分,共24分)13、2【分析】把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【详解】∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.14、【分析】利用公式直接计算.【详解】解:这六个数字中小于3的有1和2两种情况,则P(向上一面的数字小于3)=.故答案为:【点睛】本题考查概率的计算.15、2或1【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则BP=AB﹣AP=(5﹣x)cm以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当AD:PB=PA:BC时,,解得x=2或1.②当AD:BC=PA+PB时,,解得x=1,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或1.故答案为2或1.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.16、【解析】过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.17、【分析】设直线l与y轴交于点M,点关于直线的对称点,连接MB′,根据一次函数解析式确定∠PMO=45°及M点坐标,然后根据A点坐标分析B点坐标,MB的长度,利用对称性分析B′的坐标,利用待定系数法求反比例函数解析式,然后将B′坐标代入解析式,从而求解.【详解】解:直线l与y轴交于点M,点关于直线的对称点,连接MB′由直线中k=1可知直线l与x轴的夹角为45°,∴∠PMO=45°,M(0,b)由,过点作轴于点∴B(0,2),MB=b-2∴B′(2-b,b)把点代入中解得:k=-4∴∵恰好在反比例函数的图象上把B′(2-b,b)代入中解得:(负值舍去)∴故答案为:【点睛】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,用含b的代数式表示B′点坐标是解题的关键.18、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:

红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.

故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.三、解答题(共78分)19、(1)年平均增长率为20%;(2)28800户【分析】(1)一般用增长后的量=增长前的量×(1+增长率),今年年要投入资金是5(1+x)亿元,在今年的基础上再增长x,就是明年的资金投入5(1+x)(1+x),由此可列出方程5(1+x)2=7.2,求解即可;(2)计算出2020年投入资金即可得解.【详解】(1)解:设年平均增长率为x5(1+x)2=7.2解得x1=﹣2.2(舍去),x2=0.2∴x=0.2=20%答:年平均增长率为20%;(2)7.2×(1+20%)=8.64(亿元)=86400(万元),86400÷3=28800(户),答:2020年能帮助28800户建设保障性住房.【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.20、(1)3;(2)见解析;(3)【分析】(1)由勾股定理可求AB的长,由折叠的性质可得AC=AE=6,CD=DE,∠C=∠BED=90°,由勾股定理可求解;

(2)如图所示,当DE∥AC,∠EDB=∠ACB=90°,即可得到答案;

(3)由折叠的性质可得CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,可得DE=CD=CF=EF,通过证明△DEB∽△CAB,可得,即可求解.【详解】(1)∵∠ACB=90°,AC=6,BC=8,

∴,

由折叠的性质可得:△ACD≌△AED,

∴AC=AE=6,CD=DE,∠C=∠BED=90°,

∴BE=10-6=4,

∵BD2=DE2+BE2,

∴(8-CD)2=CD2+16,

∴CD=3,

故答案为:3;

(2)如图3,当DE∥AC,△BDE是直角三角形,

(3)∵DE∥AC,

∴∠ACB=∠BDE=90°,

由折叠的性质可得:△CDF≌△EDF,

∴CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,

∴EF=DE,

∴DE=CD=CF=EF,

∵DE∥AC,

∴△DEB∽△CAB,

∴,

∴,

∴DE=,

∴【点睛】此题考查几何变换综合题,全等三角形的性质,折叠的性质,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质进行推理是解题的关键.21、(1);(2)存在,理由见解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)将点A、B的坐标代入函数解析式计算即可得到;(2)点D应在x轴的上方或下方,在下方时通过计算得△ABD的面积是△ABC面积的倍,判断点D应在x轴的上方,设设D(m,n),根据面积关系求出m、n的值即可得到点D的坐标;(3)设E(x,y),由点E是以点C为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E的坐标为E,再根据点F是AE中点表示出点F的坐标,再设设F(m,n),再利用m、n、与x的关系得到n=,通过计算整理得出,由此得出F点的轨迹是以为圆心,以为半径的圆,再计算最大值与最小值即可.【详解】解:(1)将点A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x轴的下方,当D为抛物线顶点(-1,)时,,△ABD的面积是△ABC面积的倍,,所以D点一定在x轴上方.设D(m,n),△ABD的面积是△ABC面积的倍,n==m=-4或m=2D(-4,)或(2,)(3)设E(x,y),∵点E是以点C为圆心且1为半径的圆上的动点,∴,∴y=,∴E,∵F是AE的中点,∴F的坐标,设F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=,∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4()2=1,∴,∴F点的轨迹是以为圆心,以为半径的圆,∴最大值:,最小值:最大值;最小值【点睛】此题是二次函数的综合题,考察待定系数法解函数关系式,图像中利用三角形面积求点的坐标,注意应分x轴上下两种情况,(3)还考查了两点间的中点坐标的求法,两点间的距离的确定方法:两点间的距离的平方=横坐标差的平方+纵坐标差的平方.22、(1)证明见解析;(2)证明见解析;(3)的最小值为【分析】(1)由得出,进而得出,即可得出;(2)首先由正方形的性质得出,,然后由(1)中结论得出,进而即可判定,进而得出(3)首先由(1)中得出,然后构建圆,找出DE的最小值即可得解.【详解】∵四边形是正方形由(1)知,又由(1)中,得若使有最小值,则DE最小,由(2)中,点E在以AB为直径的圆上,如图所示∴DE最小值为DO-OE=∴的最小值为【点睛】此题主要考查相似三角形的性质,以及动点综合问题,解题关键是找出最小值.23、(1)证明见解析;(2).【分析】(1)根据平行四边形的定义可知四边形是平行四边形,然后根据角平分线的定义和平行线的性质可得,根据等角对等边即可证出,从而证出四边形是菱形;(2)根据菱形的性质和同角的余角相等即可证出,利用锐角三角函数即可求出AH和AG,从而求出GH.【详解】(1)证明:,,四边形是平行四边形,平分,,,,,四边形是菱形;(2)解:,,∵四边形是菱形∴,,,,,四边形是菱形,,,,.【点睛】此题考查的是菱形的判定及性质、平行线的性质、角平分线的定义、等腰三角形的性质和解直角三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论