2022-2023学年海南省海南师范大附属中学数学九上期末学业质量监测模拟试题含解析_第1页
2022-2023学年海南省海南师范大附属中学数学九上期末学业质量监测模拟试题含解析_第2页
2022-2023学年海南省海南师范大附属中学数学九上期末学业质量监测模拟试题含解析_第3页
2022-2023学年海南省海南师范大附属中学数学九上期末学业质量监测模拟试题含解析_第4页
2022-2023学年海南省海南师范大附属中学数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±92.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为()A. B.C. D.3.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④4.下列命题正确的是()A.矩形的对角线互相垂直平分B.一组对角相等,一组对边平行的四边形一定是平行四边形C.正八边形每个内角都是D.三角形三边垂直平分线交点到三角形三边距离相等5.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°6.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.圆 C.等腰梯形 D.直角三角形7.一人乘雪橇沿如图所示的斜坡(倾斜角为30°)笔直滑下,滑下的距离为24米,则此人下滑的高度为()A.24 B. C.12 D.68.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位9.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.10.下图中几何体的左视图是()A. B. C. D.11.2018年是江华县脱贫攻坚摘帽决胜年,11月25号市检查组来我县随机抽查了50户贫困户,其中还有1户还没有达到脱贫的标准,请聪明的你估计我县3000户贫困户能达到脱贫标准的大约有()户A.60 B.600 C.2940 D.240012.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.15.在Rt△ABC中,若∠C=90°,cosA=,则sinA=________.16.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).17.如图,身高为1.7m的小明AB站在小河的一岸,利用树的倒影去测量河对岸一棵树CD的高度,CD在水中的倒影为C′D,A、E、C′在一条线上.如果小河BD的宽度为12m,BE=3m,那么这棵树CD的高为_____m.18.点关于轴的对称点的坐标是__________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.20.(8分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)21.(8分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)22.(10分)如图,已知二次函数G1:y=ax2+bx+c(a≠0)的图象过点(﹣1,0)和(0,3),对称轴为直线x=1.(1)求二次函数G1的解析式;(2)当﹣1<x<2时,求函数G1中y的取值范围;(3)将G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是.(4)当直线y=n与G1、G2的图象共有4个公共点时,直接写出n的取值范围.23.(10分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.24.(10分)如图,港口位于港口的南偏西方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正东方向处,它沿正北方向航行到达处,侧得灯塔在北偏西方向上.求此时海轮距离港口有多远?25.(12分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有个点,个点,个点,5个点,…,n个点,其中任意三个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为;(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.26.如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.

参考答案一、选择题(每题4分,共48分)1、B【解析】两边直接开平方得:,进而可得答案.【详解】解:,两边直接开平方得:,则,.故选:B.【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成的形式,利用数的开方直接求解.2、C【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,通过平行可证明∽,∽,∽,然后利用相似的性质及三等分点可求出、、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可.【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:∵矩形ABCD的面积为1,∴,∵B、D为线段EF的三等分点,∴,,,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴即,∴,∴,∵四边形ABCD是矩形,∴,∵,,∴,,又∵,∴四边形BGOH是矩形,根据反比例函数的比例系数的几何意义可知:,∴,∴又∵,即,∴,∴直线EF的解析式为,令,得,令,即,解得,∴,,∵F点在轴的上方,∴,∴,,∵,即,∴.故选:C.【点睛】本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧.3、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.4、B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:,,求证:四边形ABCD是平行四边形.证明:∵,∴,∵,∴,∴,又∵,∴四边形ABCD是平行四边形,∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:,故原命题错误;D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B.【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.5、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.6、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B.【点睛】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,识别中心对称图形的关键是寻找对称中心,旋转180°后与原图重合.7、C【分析】由题意运用解直角三角形的方法根据特殊三角函数进行分析求解即可.【详解】解:因为斜坡(倾斜角为30°),滑下的距离即斜坡长度为24米,所以下滑的高度为米.故选:C.【点睛】本题考查解直角三角形相关,结合特殊三角函数进行求解是解题的关键,也可利用含30°的直角三角形,其斜边是30°角所对直角边的2倍进行分析求解.8、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.9、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC

∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.10、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,故选D.【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.11、C【分析】由题意根据用总户数乘以能达到脱贫标准所占的百分比即可得出答案.【详解】解:根据题意得:(户),答:估计我县3000户贫困户能达到脱贫标准的大约有2940户.故选:C.【点睛】本题考查的是通过样本去估计总体,注意掌握总体平均数约等于样本平均数是解题的关键.12、C【分析】利用二次函数的性质一一进行判断即可得出答案.【详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【点睛】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.二、填空题(每题4分,共24分)13、3:2【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.14、1【分析】由a+b2=2得出b2=2-a,代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10,再利用配方法化成a2+5b2=(a-,即可求出其最小值.【详解】∵a+b2=2,

∴b2=2-a,a≤2,

∴a2+5b2=a2+5(2-a)=a2-5a+10=(a-,

当a=2时,

a2+b2可取得最小值为1.

故答案是:1.【点睛】考查了二次函数的最值,解题关键是根据题意得出a2+5b2=(a-.15、【分析】根据同一锐角的正弦与余弦的平方和是1,即可求解.【详解】解:,即,,或(舍去),.故答案为:.【点睛】此题主要考查了同角的三角函数,关键是掌握同一锐角的正弦与余弦之间的关系:对任一锐角,都有.16、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.17、5.1.【解析】试题分析:根据题意可知:BE=3m,DE=9m,△ABE∽△CDE,则,即,解得:CD=5.1m.点睛:本题注意考查的就是三角形相似实际应用的题目,难度在中等.在利用三角形相似,我们一般都是用来测量较高物体或无法直接测量的物体的高度,解决这种题目的时候,我们首先要找到有哪两个三角形相似,然后根据相似三角形的边成比例得出位置物体的高度.18、【分析】根据对称点的特征即可得出答案.【详解】点关于轴的对称点的坐标是,故答案为.【点睛】本题考查的是点的对称,比较简单,需要熟练掌握相关基础知识.三、解答题(共78分)19、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长==.【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.20、能,.【分析】根据平均数的定义求解可得后两次数字之和为8或9;根据题意画出树状图,再利用概率公式求其概率.【详解】能设第4次、第5次转出的数字分别为和,根据题意得:,解得:,所以后两次数字之和为8或9;画出树状图:共有9种等情况数,其中“两次数字之和为8或9”的有5种,所以.【点睛】本题考查用列表法或树状图的方法解决概率问题;求一元一次不等式组的方法以及概率公式的运用.求出事件的所有情况和符合条件的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.21、47.3米【解析】试题分析:过点C作CD⊥AB,交AB于点D;设AD=x.本题涉及到两个直角三角形△ADC、△BDC,应利用其公共边CD构造等量关系,解三角形可得AD、BD与x的关系;借助AB=AD-BD构造方程关系式,进而可求出答案.试题解析:过点C作CD⊥AB,交AB于点D;设CD=x,在Rt△ADC中,有AD==CD=x,在Rt△BDC中,有BD=x,又有AB=AD-BD=20;即x-x=20,解得:x=10(3+)≈47.3(米).答:气球离地面的高度CD为47.3米.22、(1)二次函数G1的解析式为y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范围为<n<2或n<.【分析】(1)由待定系数法可得根据题意得解得,则G1的解析式为y=﹣x2+2x+3;(2)将解析式化为顶点式,即y=﹣(x﹣1)2+4,当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2;(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【详解】解:(1)根据题意得解得,所以二次函数G1的解析式为y=﹣x2+2x+3;(2)因为y=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4);当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2.(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【点睛】本题的考点是二次函数的综合应用.方法是根据题意及二次函数图像的性质解题.23、解:(1);(2).【分析】(1)根据题意画出树状图,根据树状图进行解答概率;(2)用列举法求概率.【详解】解:(1)画树状图得∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:P(全是奇数)=(2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,∴这些线段能构成三角形的概率为P(能构成三角形)=【点睛】本题考查概率的计算,难度不大.24、海轮距离港口的距离为【分析】过点C作CF⊥AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论