下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市德惠市第七中学2021年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知等差数列{an}的公差d≠0,若a5、a9、a15成等比数列,那么公比为(
)A
B
C
D参考答案:C2.已知,则(
)A.2
B.2
C.2
D.2参考答案:C略3.在对两个变量x、y进行线性回归分析时一般有下列步骤:()①对所求出的回归方程作出解释;②收集数据③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.若根据实际情况能够判定变量x、y具有线性相关性,则在下列操作顺序中正确的是
A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③①参考答案:D4.湖北省第十四届运动会即将于2014年8月在荆州市举行,某参赛队准备在甲、乙两名篮球运动员中选一人参加比赛。已知在某一段时间内的训练中,甲、乙的得分成绩统计用茎叶图表示如图,若甲、乙小组的平均成绩分别是,则下列结论正确的是()A.,选甲参加更合适
B.,选乙参加更合适C.,选甲参加更合适
D.,选乙参加更合适参考答案:A略5.函数是(
)(A)最小正周期为的奇函数
(B)最小正周期为的偶函数
(C)最小正周期为的奇函数
(D)最小正周期为的偶函数参考答案:A6.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为(
)(A)
(B)
(C)7π
(D)19π参考答案:C根据题意可知三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,的外接圆的半径为,由题意可得:球心到底面的距离为.球的半径为.外接球的表面积为:.故选:C.
7.已知集合,,则(
)A. B.C. D.参考答案:C【分析】根据指数不等式求得集合,再由集合的交、并、补运算求解.【详解】∵集合,,∴,,,.故选C.【点睛】本题考查指数不等式和集合的交、并、补运算,属于基础题.8.等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于(
)A.8 B.10 C.12 D.14参考答案:C【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.9.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体P-ABC的体积为V,则R=(
)A.
B.
C.
D.参考答案:C10.用秦九韶算法求n次多项式,当时,求需要算乘方、乘法、加法的次数分别为(
)A.
B.n,2n,n
C.0,2n,n
D.0,n,n参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知二面角为120,且则CD的长为
参考答案:2略12.若连续掷两次骰子,第一次掷得的点数为m,第二次掷得的点数为n,则点落在圆x2+y2=16内的概率是
。参考答案:13.已知是虚数单位,计算复数=_
.参考答案:1-2i14.已知a>0,b>0,ab﹣(a+b)=1,求a+b的最小值为
.参考答案:2+2【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用基本不等式的性质即可得出.【解答】解:∵a>0,b>0,ab﹣(a+b)=1,∴1+a+b=ab,化为(a+b)2﹣4(a+b)﹣4≥0,解得,当且仅当a=b=1+时取等号.∴a+b的最小值为2+2.故答案为:2+2.【点评】本题考查了基本不等式的性质,考查了计算能力,属于基础题.15.甲、乙、丙、丁四位足球运动员中有三人分别获得金球奖、银球奖、铜球奖,另外一人未获奖.甲说:“乙获奖了.”乙说:“丙获得了金球奖.”丙说:“丁没有获奖.”如果甲、乙、丙中有一人获得了金球奖,而且只有获得金球奖的那个人说的是真话,则获得金球奖的运动员是______.参考答案:甲【分析】根据甲、乙、丙中有一人获得了金球奖,而且只有获得金球奖的那个人说的是真话,分别分析甲乙丙获得金奖的情况即可得解.【详解】如果甲获得金球奖,根据他们的说话可得:甲获得金奖,乙获奖了,丙没有获得金球奖,丁获奖了,满足题意;如果乙获得金球奖,乙说的真话,甲说的假话,但是甲说的“乙获奖了”矛盾,不合题意;如果丙获得金球奖,丙说的真话,乙说的假话,但是乙说“丙获得了金球奖”矛盾,不合题意;所以获得金球奖的运动员是甲.故答案为:甲【点睛】此题考查逻辑推理,根据题意分类讨论分别辨析,关键在于通过推出的矛盾排除得解.16.数式1+中省略号“…”代表无限重复,但原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得=
.参考答案:2【考点】类比推理.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,2=m2,即2+m=m2,解得,m=2(﹣1舍去).故答案为:2.17.若f(cosx)=cos2x,则f(﹣)的值为.参考答案:【考点】二倍角的余弦.【分析】利用二倍角的余弦公式,求得f(x)的解析式,可得f(﹣)的值.【解答】解:∵f(cosx)=cos2x=2cos2x﹣1,∴f(x)=2x2﹣1(﹣1≤x≤1),则f(﹣)=2?﹣1=﹣,故答案为:﹣.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.求下列函数的导数(本小题满分12分)(1)
(2)(3)
(4)参考答案:略19.已知圆直线过定点.若与圆相切,求的方程;若与圆相交于两点,线段的中点为,又与的交点为,判断是否为定值,若是,则求出定值;若不是,请说明理由.参考答案:解:①当直线斜率存在时,设直线的斜率为,则直线方程为:,即.因为直线与圆相切,所以,解得所以直线方程是:.②当直线斜率不存在时,直线为,满足题意。综上可知:直线的方程是或因为直线与圆相交,所以斜率存在,设斜率为,则直线联立得所以因为是的中点,所以.设直线的方程:联立得所以所以,因为略20.为征求个人所得税修改建议,某机构对居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民月收入在[3000,4000)的频率;(2)根据频率分布直方图估算样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽多少人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程设计三层电梯
- 道勘课程设计范文
- 2025年度合同履行违约赔偿合同4篇
- 二零二五年度门窗安装与室外照明系统合同4篇
- 幼儿园墙面介绍课程设计
- 年度液压件液力件市场分析及竞争策略分析报告
- 2025年度食堂环境卫生管理承包服务合同4篇
- 2025年度企业间财务信息保密协议范本模板2篇
- 2025年度食堂承包商服务品质提升协议4篇
- 2025年度农业机械设备采购合同范本:农机购置合作协议3篇
- 新教材人教版高中物理选择性必修第二册全册各章节课时练习题及章末测验含答案解析(安培力洛伦兹力电磁感应交变电流等)
- 初级养老护理员培训全套
- 集中供热管网系统一次网的调节方法
- GB/T 41095-2021机械振动选择适当的机器振动标准的方法
- MRP、MPS计划文档教材
- 甲状腺疾病护理查房课件
- 安全安全带检查记录表
- GB∕T 26520-2021 工业氯化钙-行业标准
- 2022年浙江省绍兴市中考数学试题及参考答案
- Listen-to-this-3-英语高级听力-(整理版)
- 生活垃圾焚烧处理建设项目评价导则(2022)
评论
0/150
提交评论