下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市宣威市倘塘镇第一中学2022-2023学年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.向量与不共线,,,且与共线,则k,l应满足(
)A. B.C. D.参考答案:D【分析】由与共线,故,代入可得,列出等式方程组,即得解.【详解】由与共线,故即故,可得故选:D【点睛】本题考查了向量共线基本定理,考查了学生概念理解,数学运算能力,属于基础题.2.已知直线过点(2,1),且在两坐标轴上的截距互为相反数,则直线的方程为(
)
A.
B.或
C.或
D.或参考答案:C略3.已知,则的大小关系是(
)A.
B.
C.
D.参考答案:B略4.等差数列的前项和为,,,则的值为(
)A.
B. C.
D.参考答案:C略5.若函数在区间上是减函数,在区间上是增函数则实数的值是
(A)
(B)
(C)
(D)参考答案:B6.向量等于()参考答案:C7.函数在上的图像大致为参考答案:C8.设扇形的弧长为2,面积为2,则扇形中心角的弧度数是()A.1 B.4 C.1或4 D.π参考答案:A【考点】扇形面积公式.【分析】设扇形中心角的弧度数为α,半径为r.利用弧长公式、扇形的面积计算公式可得αr=2,=2,解出即可.【解答】解:设扇形中心角的弧度数为α,半径为r.则αr=2,=2,解得α=1.故选:A.9.已知,,,且,则与夹角为(
)A.
B.
C.
D.
参考答案:C10.已知函数y=f(x)的图象与函数y=logax(a>0且a≠1)的图象关于直线y=x对称,如果函数g(x)=f(x)[f(x)﹣3a2﹣1](a>0,且a≠1)在区间[0,+∞)上是增函数,那么a的取值范围是()A.[0,] B.[,1) C.[1,] D.[,+∞)参考答案:B【考点】对数函数的图象与性质.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由已知函数g(x)=ax(ax﹣3a2﹣1)(a>0且a≠1)在区间[0,+∞)上是增函数,令ax=t,利用换元法及二次函数性质能求出a的取值范围.【解答】解:∵函数y=f(x)的图象与函数y=logax(a>0且a≠1)的图象关于直线y=x对称,∴f(x)=ax(a>0,a≠1),∵函数g(x)=f(x)[f(x)﹣3a2﹣1](a>0,且a≠1)在区间[0,+∞)上是增函数,∴函数g(x)=ax(ax﹣3a2﹣1)(a>0且a≠1)在区间[0,+∞)上是增函数令ax=t,则g(x)=ax(ax﹣3a2﹣1)转化为y=t2﹣(3a2+1)t,其对称轴为t=>0,当a>1时,t≥1,要使函数y=t2﹣(3a2+1)t在[1,+∞)上是增函数则t=≤1,故不存在a使之成立;当0<a<1时,0<t≤1,要使函数y=t2﹣(3a2+1)t在(0,1]上是减函数则t=≥1,故≤a<1.综上所述,a的取值范围是[,1).故选:B.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意换元法及二次函数性质的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.(2016秋?建邺区校级期中)已知集合A={1,2,3},B={2,3,5},则A∪B=
.参考答案:{1,2,3,5}【考点】并集及其运算.【专题】集合.【分析】利用并集定义求解.【解答】解:∵集合A={1,2,3},B={2,3,5},∴A∪B={1,2,3,5}.故答案为:{1,2,3,5}.【点评】本题考查并集的求法,解题时要认真审题,是基础题.12.等比数列{an}中,a1=1,a4=8,则a7=_________.参考答案:6413.已知函数,则f(1)+f(2)+f(3)+f()+=.参考答案:考点: 函数的值.专题: 函数的性质及应用.分析: 由函数的解析式可得f(x)+f()=1,由此求得f(1)+f(2)+f(3)+f()+
的值.解答: 解:∵函数,∴f()==,∴f(x)+f()=1.∴f(1)+f(2)+f(3)+f()+=f(1)+1+1=,故答案为.点评: 本题主要考查求函数的值,关键是利用f(x)+f()=1,属于基础题.14.在△ABC中,若,则角A的值为
▲
.参考答案:由正弦定理,将角化成边,得展开所以根据余弦定理所以,即
15.设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是
.参考答案:{x|﹣2<x<0或2<x≤5}【考点】函数奇偶性的性质;函数的图象.【专题】数形结合.【分析】由奇函数图象的特征画出此抽象函数的图象,结合图象解题.【解答】解:由奇函数图象的特征可得f(x)在[﹣5,5]上的图象.由图象可解出结果.故答案为{x|﹣2<x<0或2<x≤5}.【点评】本题是数形结合思想运用的典范,解题要特别注意图中的细节.16.关于x的不等式ax2﹣|x+1|+3a≥0的解集为(﹣∞,+∞),则实数a的取值范围是.参考答案:[,+∞)【考点】其他不等式的解法.【分析】将不等式恒成立进行参数分类得到a≥,利用换元法将不等式转化为基本不等式的性质,根据基本不等式的性质求出的最大值即可得到结论.【解答】解:不等式ax2﹣|x+1|+3a≥0,则a(x2+3)≥|x+1|,即a≥,设t=x+1,则x=t﹣1,则不等式a≥等价为a≥==>0即a>0,设f(t)=,当|t|=0,即x=﹣1时,不等式等价为a+3a=4a≥0,此时满足条件,当t>0,f(t)==,当且仅当t=,即t=2,即x=1时取等号.当t<0,f(t)==≤,当且仅当﹣t=﹣,∴t=﹣2,即x=﹣3时取等号.∴当x=1,即t=2时,fmax(t)==,∴要使a≥恒成立,则a,方法2:由不等式ax2﹣|x+1|+3a≥0,则a(x2+3)≥|x+1|,∴要使不等式的解集是(﹣∞,+∞),则a>0,作出y=a(x2+3)和y=|x+1|的图象,由图象知只要当x>﹣1时,直线y═|x+1|=x+1与y=a(x2+3)相切或相离即可,此时不等式ax2﹣|x+1|+3a≥0等价为不等式ax2﹣x﹣1+3a≥0,对应的判别式△=1﹣4a(3a﹣1)≤0,即﹣12a2+4a+1≤0,即12a2﹣4a﹣1≥0,(2a﹣1)(6a+1)≥0,解得a≥或a≤﹣(舍),故答案为:[,+∞)17.设向量,,若,t=__________.参考答案:【分析】根据向量垂直的坐标表示得到方程,求参即可.【详解】向量,,若,则故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(1)求函数的最小值;(2)求实数的取值范围,使在区间上是单调函数.参考答案:②
………7分③………………8分…………9分综上所述:…………10分(2)易知,即在区间[-5,5]上是单调函数………………14分19.(13分)已知函数在一个周期内的图象如图所示。(1)求函数的解析式;
(2)并写出的周期、振幅、初相、对称轴。(3)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。
参考答案:(1)
(2)周期,振幅2初相对称轴(3)两根和为,两根和为。20.写出求过P(3,2),Q(-1,6)两点的直线斜率的一个算法.参考答案:
解析:第一步:计算,
第二步:输出-1。21.△ABC中,顶点A的坐标为(1,2),高BE,CF所在直线的方程分别为2x﹣3y+1=0,x+y=0,求这个三角形三条边所在直线的方程.参考答案:【考点】IK:待定系数法求直线方程.【分析】由题意求出直线AC、AB的斜率,写出直线AC、AB的方程;由直线与高线的交点求出C、B的坐标,即可写出直线BC的方程.【解答】解:画出图形如图所示,高BE所在直线的方程为2x﹣3y+1=0,∴直线AC的斜率为﹣,又高CF所在直线的方程x+y=0,∴直线AB的斜率为1;∴直线AC的方程为3x+2y﹣7=0,直线AB的方程为x﹣y+1=0;再由,解得C点坐标为(7,﹣7);由,解得B点坐标为(﹣2,﹣1);于是直线BC的方程为=,化简得2x+3y+7=0.22.已知函数f(x)=x2+2ax+2,x∈[﹣5,5](Ⅰ)若y=f(x)在[﹣5,5]上是单调函数,求实数a取值范围.(Ⅱ)求y=f(x)在区间[﹣5,5]上的最小值.参考答案:【考点】二次函数的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】先求出函数f(x)的对称轴,(1)根据函数的单调性求出a的范围即可;(2)通过讨论a的范围,结合函数的单调性求出函数的最小值即可.【解答】解:函数f(x)=x2+2ax+2,x∈[﹣5,5]的对称轴为x=﹣a,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1)若y=f(x)在[﹣5,5]上是单调函数,则﹣a≤﹣5或﹣a≥5,即a≤﹣5或a≥5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)①﹣a≤﹣5,即a≥5时,f(x)在[﹣5,5]上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度特许经营权授权合同模板
- 喷涂涂装技术在金属表面处理中的应用考核试卷
- 优化创业空间的财务管理与风险控制考核试卷
- 医药制造业数据安全与隐私保护考核试卷
- 合成材料的制造技术考核试卷
- 企业教育培训的领导力培养与管理者发展考核试卷
- 农业科学的意义和作用考核试卷
- 2024年度智能家居控制系统施工合同
- 木材的营销与品牌建设考核试卷
- 2024北京夫妻股权分割合同
- (完整版)二年级乘除法竖式计算
- 60立方油罐容积细表
- -精神病医院设置基本标准
- 铝土矿采矿项目可行性研究报告写作范文
- A01083《纳税人(扣缴义务人)基础信息报告表》
- 元旦、春节前我市建筑领域农民工工资支付工作通知
- 医疗废物流失泄漏应急处理流程图
- 长方形、正方形的面积和周长复习课件
- 信号与系统(第十章Z-变换)
- 广东省高级人民法院民一庭关于建设工程施工合同纠纷案件若干问题的意见
- 家装施工组织设计方案模板
评论
0/150
提交评论