下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市嵩明县小街镇第一中学2022年高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.区间[0,5]上任意取一个实数x,则满足x[0,1]的概率为A. B. C. D.参考答案:A【分析】利用几何概型求解即可.【详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【点睛】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.2.某群体中的每位成员使用移动支付的概率都为P,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,则(
)A.0.7
B.0.6
C.0.4
D.0.3参考答案:A某群体中的每位成员使用移动支付的概率都为p,看做是独立重复事件,满足X~B(10,p),P(x=4)<P(X=6),可得可得1﹣2p<0.即p.因为DX=2.1,可得10p(1﹣p)=2.1,解得p=0.7或p=0.3(舍去).故答案为:A.
3.若满足约束条件,则目标函数的最大值为(
)A.3
B.4
C.6
D.9参考答案:C4.已知数列{an}的前n项和为Sn,且,则等于A.-2 B.1 C.2 D.4参考答案:D【分析】在中,分别令,即可得结果.【详解】由,令,可得,再,可得,故选:D.【点睛】本题主要考查数列的基本概念,以及特值法的应用,属于基础题.5.△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为(
)A. B. C.1 D.参考答案:A【考点】余弦定理.【专题】计算题;解三角形.【分析】将(a+b)2﹣c2=4化为c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,再利用余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab即可求得答案.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.【点评】本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.6.已知全集,则正确表示集合和关系的图是参考答案:B略7.计算的结果是
(
)A.
B.
C.
D.参考答案:D8.将函数的图象沿x轴方向左平移个单位,平移后的图象如右图所示.则平移后的图象所对应函数的解析式是(
)A.
B.C.
D.参考答案:C9.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为A.
B.
C.
D.参考答案:B略10.若偶函数f(x)在(﹣∞,0]内单调递减,则不等式f(﹣1)<f(x)的解集是() A.(﹣∞,﹣1) B.(﹣1,+∞) C.(﹣1,1) D.(﹣∞,﹣1)∩(1,+∞)参考答案:D【考点】奇偶性与单调性的综合. 【专题】函数思想;转化思想;函数的性质及应用. 【分析】根据函数奇偶性和单调性的关系进行转化求解即可. 【解答】解:∵偶函数f(x)在(﹣∞,0]内单调递减, ∴函数f(x)在[0,+∞)内单调递增, 则不等式f(﹣1)<f(x)等价为f(1)<f(|x|), 即|x|>1,即x>1或x<﹣1, 故选:D. 【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键. 二、填空题:本大题共7小题,每小题4分,共28分11.如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,则异面直线A1C与B1C1所成的角为.参考答案:【考点】异面直线及其所成的角.【分析】求出三角形的三个边长,然后求解异面直线所成角即可.【解答】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,CA1=,三角形BCA1是正三角形,异面直线所成角为.故答案为.12.如图所示,分别以A,B,C为圆心,在△ABC内作半径为2的扇形(图中的阴影部分),在△ABC内任取一点P,如果点P落在阴影内的概率为,那么△ABC的面积是.参考答案:6π【考点】模拟方法估计概率.【分析】由题意知本题是一个几何概型,先试验发生包含的所有事件是三角形的面积S,然后求出阴影部分的面积,代入几何概率的计算公式即可求解.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件是直角三角形的面积S,阴影部分的面积S1=π22=2π.点P落在区域M内的概率为P==.故S=6π,故答案为:6π.13.若复数所对应的点在第三象限,则实数k的取值范围是_______.参考答案:【分析】由第三象限的点的横坐标与纵坐标都小于0即可得到答案。【详解】由题可知,该复数在第三象限,满足实部,虚部,则,解不等式组得到,即或,所以,故答案为【点睛】本题重点考查复数的代数形式以及几何意义,解题时注意把握复数的实部与虚部分别对应复平面点的横坐标与纵坐标。属于中档题。14.若f(x)为R上的增函数,则满足f(2-m)<f(m2)的实数m的取值范围是________.参考答案:15.如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面分别与直线BC,AD相交于点G,H,则下列结论正确的是___________.①对于任意的平面,都有直线GF,EH,BD相交于同一点;②存在一个平面,使得点G在线段BC上,点H在线段AD的延长线上;③对于任意的平面,都有;④对于任意的平面,当G,H在线段BC,AD上时,几何体AC-EGFH的体积是一个定值.参考答案:③④【分析】当分别为中点时,可知三线互相平行,排除①;若三线相交,交点必在上,可排除②;取中点,利用线面平行判定定理可证得平面,平面,再结合为中点可得到平面的距离相等,进一步得到到直线的距离相等,从而证得面积相等,③正确;首先通过临界状态与重合,与重合时,求得所求体积为四面体体积一半;当不位于临界状态时,根据③的结论可证得,从而可知所求体积为四面体体积一半,进而可知为定值,④正确.【详解】当分别为中点时,,则①错误若三线相交,则交点不存在在线段上,在线段延长线上的情况,则②错误取中点,如图所示:分别为中点
又平面,平面
平面同理可得:平面到平面的距离相等;到平面的距离相等又为中点
到平面的距离相等到平面的距离相等连接交于,则为中点
到距离相等,则③正确当与重合,与重合时,此时几何体体积为三棱锥的体积为中点
三棱锥的体积为四面体体积的一半当如图所示时,由③可知又为中点
到截面的距离相等
综上所述,几何体的体积为四面体体积的一半,为定值,则④正确本题正确结果:③④【点睛】本题考查立体几何中的截面问题,涉及到几何体体积的求解、点到面的距离、直线交点问题等知识;要求学生对于空间中的直线、平面位置关系等知识有较好的理解,对学生的空间想象能力和逻辑推理能力有较高的要求,属于难题.
16.若直线与双曲线始终有公共点,则取值范围是
。参考答案:
解析:
当时,显然符合条件;当时,则17.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的体积为_________参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)已知等比数列{}的首项为l,公比q≠1,为其前n项和,分别为某等差数列的第一、第二、第四项.(I) 求和;
(Ⅱ)设,数列{}的前n项和为Tn,求证:.参考答案:(1)为某等差数列的第一、第二、第四项
................12分19.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.(Ⅰ)求底面积并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?参考答案:【考点】函数模型的选择与应用.【分析】(Ⅰ)分析题意,本小题是一个建立函数模型的问题,可设水池的底面积为S1,池壁面积为S2,由题中所给的关系,将此两者用池底长方形长x表示出来.(Ⅱ)此小题是一个花费最小的问题,依题意,建立起总造价的函数解析式,由解析式的结构发现,此函数的最小值可用基本不等式求最值,从而由等号成立的条件求出池底边长度,得出最佳设计方案【解答】解:(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.(12分)【点评】本题考查函数模型的选择与应用,解题的关键是建立起符合条件的函数模型,故分析清楚问题的逻辑联系是解决问题的重点,此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标文件评审记录跟踪查询
- 九年级道德与法治上册 第二单元 感受祖国的心跳 第四课 城乡直通车 第3框 城乡统筹教案 人民版
- 2024-2025学年新教材高中生物 第1章 遗传因子的发现 第1节 第1课时 一对相对性状的杂交实验过程和解释教案 新人教版必修第二册
- 安徽省滁州二中高中信息技术《5.1认识信息资源的管理》教案 新人教版必修
- 广东省2024-2025年高中物理 学业水平测试冲A 第6章 机械能和能源教案(含解析)
- 2023七年级英语下册 Unit 3 How do you get to school Section B 第5课时(3a-3b)教案 (新版)人教新目标版
- 2023六年级数学下册 第四单元 圆柱和圆锥4.8 估算小麦堆的质量教案 冀教版
- 自建房修建及安全合同(2篇)
- 人教版血管课件
- 第六讲 变换句型写一写(看图写话教学)-一年级语文上册(统编版·2024秋)
- 宁夏医学会超声医学分会委员候选人推荐表
- 消费者咨询业务试题及答案(4月4更新)
- 重点环节、重点部位医院感染预防与控制
- 晕厥的诊断与治疗晕厥专家讲座
- 海尔bcd系列冰箱说明书
- 弘扬民族精神奔流不息民族魂
- 《最后一次讲演》优秀教案及教学反思(部编人教版八年级下册)共3篇
- 2023年公共营养师之三级营养师真题及答案
- 研学安全主题班会课件
- 《观察洋葱表皮细胞》实验记录单
- 国开电大中国古代文学(B)(1)形考四
评论
0/150
提交评论