




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市官渡区金马中学2021-2022学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若点与点关于直线对称,则直线方程为(A)(B)
(C)(D)参考答案:D2.某四棱锥的三视图如图所示,在四棱锥的四个侧面中,面积的最大值是(
)A. B. C.2 D.3参考答案:D【分析】首先确定几何体的空间结构特征,然后求解其几个侧面积中的最大值即可.【详解】如图所示,三视图对应的几何体为图中的四棱锥,其中正方体的棱长为2,点M为棱的中点,很明显,,由于,故,,,则四棱锥的四个侧面中,面积的最大值是3.故选:D.【点睛】本题主要考查三视图还原几何体的方法,三角形面积公式及其应用等知识,意在考查学生的转化能力和计算求解能力.3.若是函数的零点,则属于区间(
)A.
B.
C.
D.参考答案:A4.下面叙述正确的是(
)A.过平面外一点只能作一条直线与这个平面平行B.过直线外一点只能作一个平面与这条直线平行C.过平面外一点只能作一个平面与这个平面垂直
D.过直线外一点只能作一个平面与这条直线垂直参考答案:D略5.已知椭圆的左右焦点分别为F1、F2,过F2且倾角为45°的直线l交椭圆于A、B两点,以下结论中:①△ABF1的周长为8;②原点到l的距离为1;③|AB|=;正确的结论有几个
(
)A.3
B.2C.1
D.0参考答案:A略6.已知|z|=3,且z+3i是纯虚数,则z=()A.-3i
B.3i
C.±3i
D.4i参考答案:B7.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8参考答案:B【考点】圆与圆锥曲线的综合;抛物线的简单性质.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,xA==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.8.直线2x﹣y+k=0与4x﹣2y+1=0的位置关系是(
)A.平行 B.不平行C.平行或重合 D.既不平行也不重合参考答案:C【考点】方程组解的个数与两直线的位置关系.【专题】计算题.【分析】化简方程组得到2k﹣1=0,根据k值确定方程组解的个数,由方程组解得个数判断两条直线的位置关系.【解答】解:∵由方程组,得2k﹣1=0,当k=时,方程组由无穷多个解,两条直线重合,当k≠时,方程组无解,两条直线平行,综上,两条直线平行或重合,故选C.【点评】本题考查方程组解得个数与两条直线的位置关系,方程有唯一解时,两直线相交,方程组有无穷解时,两直线重合,方程组无解时,两直线平行.9.设变量满足约束条件则目标函数的最小值是A.
B.C.D.参考答案:B10.复数1+cosα+isinα(π<α<2π)的模为()A.2cos
B.-2cos
C.2sin D.-2sin参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是_________.参考答案:
1略12.已知两曲线的参数方程分别为和,它们的交点坐标为___________________。参考答案:13.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温x(℃)171382月销售量y(件)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为________件.参考答案:46
14.若,则=
.参考答案:315.参考答案:16.双曲线的离心率大于的充分必要条件是
.参考答案:m>1
17.已知函数f(x)=lnx+ax2+(2﹣2a)x+(a>0),若存在三个不相等的正实数x1,x2,x3,使得=3成立,则a的取值范围是
.参考答案:(,)考点:利用导数研究函数的极值.专题:导数的综合应用.分析:若存在三个不相等的正实数x1,x2,x3,使得=3成立,等价为方程f(x)=3x存在三个不相等的实根,构造函数,求函数的导数,研究函数的极值,利用极大值大于0,极小值小于0,即可得到结论.解答: 解:若存在三个不相等的正实数x1,x2,x3,使得=3成立,即方程f(x)=3x存在三个不相等的实根,即lnx+ax2+(2﹣2a)x+=3x,lnx+ax2﹣(1+2a)x+=0有三个不相等的实根,设g(x)=lnx+ax2﹣(1+2a)x+,则函数的导数g′(x)=+2ax﹣(1+2a)==,由g′(x)=0得x=1,x=,则g(1)=a﹣1﹣2a+=﹣1﹣a+,g()=ln+a()2﹣(1+2a)+=﹣1﹣ln2a.若=1,即a=时,g′(x)=≥0,此时函数g(x)为增函数,不可能有3个根,若>1,即0<a<时,由g′(x)>0得x>或0<x<1,此时函数递增,由g′(x)<0得1<x<,此时函数递减,则当x=1时函数g(x)取得极大值g(1)=﹣1﹣a+,当x=时函数g(x)取得极小值g()=﹣1﹣ln2a,此时满足g(1)=﹣1﹣a+>0且g()=﹣1﹣ln2a<0,即,即,则,解得<a<.同理若<1,即a>时,由g′(x)>0得x>1或0<x<,此时函数递增,由g′(x)<0得<x<1,此时函数递减,则当x=1时函数g(x)取得极小值g(1)=﹣1﹣a+,当x=时函数g(x)取得极大值g()=﹣1﹣ln2a,此时满足g(1)=﹣1﹣a+<0且g()=﹣1﹣ln2a>0,即,∵a>,∴2a>1,则ln2a>0,则不等式ln2a<﹣1不成立,即此时不等式组无解,综上<a<.故答案为:点评:本题主要考查导数的综合应用,根据条件转化为方程f(x)=3x存在三个不相等的实根,构造函数,利用导数研究函数的极值是解决本题的关键.综合性较强,难度较大.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在平面直角坐标系xOy中,椭圆M:的左顶点为A,与x轴平行的直线与椭圆M交于B,C两点,,.已知椭圆M离心率,且点在椭圆M上.(1)求椭圆M的标准方程;(2)证明点D在一条定直线上运动,并求出该直线方程;(3)求△BCD面积的最大值.参考答案:(1)椭圆的标准方程为:.(2)设点坐标为,设点坐标为,则点坐标为,由题,可得:,即①,即②联立①②,化简整理得,,故点在定直线上运动.(3)由(2)可得,点的纵坐标为,又,则,所以,,当且仅当,即时,等号成立.19.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.参考答案:【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】解法一:(I)由抛物线定义可得:|AF|=2+=3,解得p.即可得出抛物线E的方程.(II)由点A(2,m)在抛物线E上,解得m,不妨取A,F(1,0),可得直线AF的方程,与抛物线方程联立化为2x2﹣5x+2=0,解得B.又G(﹣1,0),计算kGA,kGB,可得kGA+kGB=0,∠AGF=∠BGF,即可证明以点F为圆心且与直线GA相切的圆,必与直线GB相切.解法二:(I)同解法一.(II)由点A(2,m)在抛物线E上,解得m,不妨取A,F(1,0),可得直线AF的方程,与抛物线方程联立化为2x2﹣5x+2=0,解得B.又G(﹣1,0),可得直线GA,GB的方程,利用点到直线的距离公式可得:点F(1,0)到直线GA、GB的距离,若相等即可证明此以点F为圆心且与直线GA相切的圆,必与直线GB相切.【解答】解法一:(I)由抛物线定义可得:|AF|=2+=3,解得p=2.∴抛物线E的方程为y2=4x;(II)证明:∵点A(2,m)在抛物线E上,∴m2=4×2,解得m=,不妨取A,F(1,0),∴直线AF的方程:y=2(x﹣1),联立,化为2x2﹣5x+2=0,解得x=2或,B.又G(﹣1,0),∴kGA=.kGB==﹣,∴kGA+kGB=0,∴∠AGF=∠BGF,∴x轴平分∠AGB,因此点F到直线GA,GB的距离相等,∴以点F为圆心且与直线GA相切的圆,必与直线GB相切.解法二:(I)同解法一.(II)证明:点A(2,m)在抛物线E上,∴m2=4×2,解得m=,不妨取A,F(1,0),∴直线AF的方程:y=2(x﹣1),联立,化为2x2﹣5x+2=0,解得x=2或,B.又G(﹣1,0),可得直线GA,GB的方程分别为:x﹣3y+2=0,=0,点F(1,0)到直线GA的距离d==,同理可得点F(1,0)到直线GA的距离=.因此以点F为圆心且与直线GA相切的圆,必与直线GB相切.【点评】本小题主要考查抛物线、直线与抛物线及其圆的位置关系及其性质、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,属于难题.20.(本小题满分9分)在数列中,,
.(Ⅰ)求,的值;(Ⅱ)证明:数列是等比数列,并求的通项公式;(Ⅲ)求数列的前项和.参考答案:(Ⅰ)解:因为,
,所以,……………………2分
.…………………4分(Ⅱ)证明:因为,又,所以数列是首项为,公比为的等比数列.……5分
所以,
即,所以的通项公式为
.…………6分(Ⅲ)解:因为的通项公式为
,所以当是正奇数时,.……………7分当是正偶数时,.………………8分综上,
…………………9分21.如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知,.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.参考答案:证明:(1)因为D,E分别为棱PC,AC的中点,所以DE∥PA
……………2分又因为PA平面DEF,DE平面DEF,
……………4分所以直线PA∥平面DEF
……………5分(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,EF∥BC,且DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,
……………6分所以∠DEF=90°,即DE⊥EF
……………7分又PA⊥AC,DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东管理学院《中国工艺美术史》2023-2024学年第二学期期末试卷
- 昭通市永善县2024-2025学年数学三下期末质量检测模拟试题含解析
- 武汉交通职业学院《生物学课程标准与教材研究》2023-2024学年第二学期期末试卷
- 襄阳职业技术学院《专业英语(水文与水资源)》2023-2024学年第一学期期末试卷
- 长春师范大学《应用生物技术》2023-2024学年第二学期期末试卷
- 湖北省咸宁市崇阳县2025届初三年级元月调研考试英语试题含答案
- 灌溉工程建设的生态环境保护考核试卷
- 数字化医疗在未来医疗中的角色考核试卷
- 木制容器仓储与物流考核试卷
- 畜禽繁殖性能检测仪器考核试卷
- 奥氏体不锈钢对接焊接接头的超声检测
- 过滤式消防自救呼吸器-安全培训
- 胸腔积液诊断的中国专家共识(2022版)解读
- 既有建筑外观改造和景观环境综合整治技术导则
- BIM在水利水电工程中的应用
- 学校直饮水卫生管理制度
- 产科术后镇痛
- 中央企业全面风险管理报告三篇
- 小神仙简谱(音乐资料)
- JJG 539-2016数字指示秤
- 九年级道德与法治第一学期期中考试质量分析报告
评论
0/150
提交评论