版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年宁夏回族自治区中卫市成考专升本高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.
2.函数f(x)在x=x0处连续是f(x)在x=x0处极限存在的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分也不必要条件
3.
4.对于微分方程y"-2y'+y=xex,利用待定系数法求其特解y*时,下列特解设法正确的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
5.A.A.
B.
C.-3cotx+C
D.3cotx+C
6.平衡物体发生自锁现象的条件为()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
7.设区域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
8.微分方程y’-4y=0的特征根为()A.0,4B.-2,2C.-2,4D.2,4
9.设f(x)在点x0的某邻域内有定义,且,则f'(x0)等于().A.-1B.-1/2C.1/2D.1
10.A.
B.
C.e-x
D.
11.
12.A.A.
B.0
C.
D.1
13.
14.
15.
16.
A.
B.
C.
D.
17.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4
18.
19.曲线Y=x-3在点(1,1)处的切线的斜率为().
A.-1
B.-2
C.-3
D.-4
20.A.
B.0
C.
D.
21.
22.
23.在空间直角坐标系中,方程2+3y2+3x2=1表示的曲面是().
A.球面
B.柱面
C.锥面
D.椭球面
24.
25.设f'(x0)=1,则等于().A.A.3B.2C.1D.1/2
26.
27.
28.设函数y=f(x)的导函数,满足f(-1)=0,当x<-1时,f(x)<0;当x>-1时,f(x)>0.则下列结论肯定正确的是().
A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点
29.进行钢筋混凝土受弯构件斜截面受剪承载力设计时,防止发生斜拉破坏的措施是()。
A.控制箍筋间距和箍筋配筋率B.配置附加箍筋和吊筋C.采取措施加强纵向受拉钢筋的锚固D.满足截面限值条件30.A.3B.2C.1D.031.设函数f(x)在[a,b]上连续,则曲线y=f(x)与直线x=a,x=b,y=0所围成的平面图形的面积等于()。A.
B.
C.
D.
32.二元函数z=x3-y3+3x2+3y2-9x的极小值点为()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)33.半圆板的半径为r,重为w,如图所示。已知板的重心C离圆心的距离为在A、B、D三点用三根铅垂绳悬挂于天花板上,使板处于水平位置,则三根绳子的拉力为()。
A.F1=0.38w
B.F2=0.23w
C.F3=0.59w
D.以上计算均正确
34.A.
B.
C.-cotx+C
D.cotx+C
35.设y=lnx,则y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
36.曲线y=x2+5x+4在点(-1,0)处切线的斜率为()A.A.2B.-2C.3D.-337.设f(x)为连续函数,则(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
38.
39.
40.设z=tan(xy),则等于()A.A.
B.
C.
D.
41.f(x)在x=0的某邻域内一阶导数连续且则()。A.x=0不是f(x)的极值点B.x=0是f(x)的极大值点C.x=0是f(x)的极小值点D.x=0是f(x)的拐点42.()。A.
B.
C.
D.
43.
44.
45.设z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
46.
47.当x→0时,x+x2+x3+x4为x的
A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小
48.A.e
B.e-1
C.-e-1
D.-e
49.滑轮半径r=0.2m,可绕水平轴O转动,轮缘上缠有不可伸长的细绳,绳的一端挂有物体A,如图所示。已知滑轮绕轴0的转动规律φ=0.15t3rad,其中t单位为s,当t=2s时,轮缘上M点的速度、加速度和物体A的速度、加速度计算不正确的是()。
A.M点的速度为vM=0.36m/s
B.M点的加速度为aM=0.648m/s2
C.物体A的速度为vA=0.36m/s
D.物体A的加速度为aA=0.36m/s2
50.
二、填空题(20题)51.52.53.
54.
55.
56.
57.设y=cos3x,则y'=__________。
58.
59.
60.61.
62.微分方程y'-2y=3的通解为__________。
63.设f(x)=esinx,则=________。
64.设y=f(x)在点x0处可导,且在点x0处取得极小值,则曲线y=f(x)在点(x0,f(x0))处的切线方程为________。
65.
66.
67.设y=e3x知,则y'_______。
68.
69.
70.
三、计算题(20题)71.
72.将f(x)=e-2X展开为x的幂级数.73.74.75.证明:
76.求微分方程y"-4y'+4y=e-2x的通解.
77.求曲线在点(1,3)处的切线方程.
78.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
79.80.求微分方程的通解.81.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.82.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
83.
84.求函数f(x)=x3-3x+1的单调区间和极值.85.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.86.当x一0时f(x)与sin2x是等价无穷小量,则87.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
88.
89.
90.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.四、解答题(10题)91.
92.设f(x)=x-5,求f'(x)。
93.
94.(本题满分8分)
95.设y=x2+2x,求y'。
96.
97.设z=z(x,y)由ez-z+xy=3所确定,求dz。
98.
99.
100.
五、高等数学(0题)101.求df(x)。六、解答题(0题)102.
参考答案
1.C
2.A函数f(x)在x=x0处连续,则f(x)在x=x0处极限存在.但反过来却不行,如函数f(x)=故选A。
3.C
4.D特征方程为r2-2r+1=0,特征根为r=1(二重根),f(x)=xex,α=1为特征根,因此原方程特解y*=x2(Ax+B)ex,因此选D。
5.C
6.A
7.D的值等于区域D的面积,D为边长为2的正方形面积为4,因此选D。
8.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根为2,-2,故选B.
9.B由导数的定义可知
可知,故应选B。
10.A
11.B
12.D本题考查的知识点为拉格朗日中值定理的条件与结论.
可知应选D.
13.A
14.A
15.D
16.B
17.B
18.C
19.C点(1,1)在曲线.由导数的几何意义可知,所求切线的斜率为-3,因此选C.
20.A
21.B解析:
22.B
23.D对照标准二次曲面的方程可知x2+3y2+3x2=1表示椭球面,故选D.
24.B
25.B本题考查的知识点为导数的定义.
由题设知f'(x0)=1,又由题设条件知
可知应选B.
26.B解析:
27.A解析:
28.C本题考查的知识点为极值的第-充分条件.
由f(-1)=0,可知x=-1为f(x)的驻点,当x<-1时f(x)<0;当x>-1时,
f(x)>1,由极值的第-充分条件可知x=-1为f(x)的极小值点,故应选C.
29.A
30.A
31.C
32.A对于点(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此点为非极值点.对于点(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此点为极大值点.对于点(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此点为极小值点.对于点(1,2),A=12=0,C=-6,B2-AC=72>0,故此点为非极值点.
33.A
34.C本题考查的知识点为不定积分基本公式.
35.D由于Y=lnx,可得知,因此选D.
36.C点(-1,0)在曲线y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由导数的几何意义可知,曲线y=x2+5x+4在点(-1,0)处切线的斜率为3,所以选C.
37.C本题考查的知识点为不定积分的性质.
(∫f5x)dx)'为将f(5x)先对x积分,后对x求导.若设g(x)=f(5x),则(∫f5x)dx)'=(∫g(x)dx)'表示先将g(x)对x积分,后对x求导,因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知应选C.
38.A
39.B
40.B本题考查的知识点为偏导数运算.
由于z=tan(xy),因此
可知应选A.
41.A∵分母极限为0,分子极限也为0;(否则极限不存在)用罗必达法则同理即f"(0)一1≠0;x=0不是驻点∵可导函数的极值点必是驻点∴选A。
42.A
43.A
44.D
45.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
46.B
47.A本题考查了等价无穷小的知识点。
48.B所给极限为重要极限公式形式.可知.故选B.
49.B
50.D
51.
52.
53.
54.
55.
56.
57.-3sin3x
58.(-33)(-3,3)解析:
59.
60.
61.
62.y=Ce2x-3/263.由f(x)=esinx,则f"(x)=cosxesinx。再根据导数定义有=cosπesinπ=-1。
64.y=f(x0)y=f(x)在点x0处可导,且y=f(x)有极小值f(x0),这意味着x0为f(x)的极小值点。由极值的必要条件可知,必有f"(x0)=0,因此曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)为所求切线方程。65.1.
本题考查的知识点为导数的计算.
66.67.3e3x
68.
69.2/3
70.y=071.由一阶线性微分方程通解公式有
72.
73.
74.
75.
76.解:原方程对应的齐次方程为y"-4y'+4y=0,
77.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
78.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度汽车销售与服务外包合同
- 《固冲汤加减联合优思明治疗脾虚型青春期功血的临床观察》
- 2024年度出租车座套定制采购合同
- 房屋固定合同范本
- 高效能源利用与节能减排
- 家具行业供应链管理
- 《钢铁企业财务风险成因及防范研究》
- 细胞凋亡与增生因
- 2024年度融资租赁合同:租赁公司与承租人之间关于融资租赁的协议
- 《HDGF公司股权激励财务绩效案例研究》
- 电力工程验收附件模板
- 简述火力发电厂生产过程课件
- 骨髓造血细胞形态学检查课件
- 砷环境地球化学研究进展
- 道路冷再生施工工艺及方法
- 施工区域交通安全措施及应急预案措施
- 新版幼儿园安全用电课件ppt
- 人教鄂教版科学六年级下册全册教案
- 《客舱服务与的管理》课程标准.doc
- 材料成型概论 第四章 挤压成型
- 三峡教学案例
评论
0/150
提交评论