下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A. B.C. D.2.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为()A. B. C. D.3.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.84.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.5.已知非零向量,满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:6.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.7.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.8.函数f(x)=lnA. B. C. D.9.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.10.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.11.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.12.设,,,则,,三数的大小关系是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°14.设是公差不为0的等差数列的前n项和,且,则______.15.在中,角的对边分别为,且.若为钝角,,则的面积为____________.16.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)①,,;②,,;③,,;④,,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,,,,,且的面积为.(1)求;(2)求的周长.18.(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.19.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.20.(12分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.(1)求抛物线的标准方程;(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.21.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M22.(10分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,若函数在上没有零点,∴,∴,,解得,又,解得,当k=0时,解,当k=-1时,,可得,.故答案为:A.【点睛】本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.2.B【解析】
根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,,又以为直径的圆经过点,则,即,解得,,所以,,即,即,所以,双曲线的离心率为.故选:B.【点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.3.B【解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.4.A【解析】
由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.5.C【解析】
根据向量的数量积运算,由向量的关系,可得选项.【详解】,,∴等价于,故选:C.【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.6.A【解析】
由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.7.D【解析】
根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,
当,若为增函数,则①,
当,若为增函数,必有在上恒成立,
变形可得:,
又由,可得在上单调递减,则,
若在上恒成立,则有②,
若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③
联立①②③可得:.
故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.8.C【解析】因为fx=lnx2-4x+4x-23=9.C【解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.10.B【解析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.11.C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.12.C【解析】
利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,,,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】
设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.14.18【解析】
将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【详解】因为,所以.故填:.【点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.15.【解析】
转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.【详解】因为,所以.又因为,且为锐角,所以.由余弦定理得,即,解得,所以故答案为:【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.16.①②④【解析】
由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断【详解】①时,令,则,单调递增,,即.令,则,单调递减,,即,因此,满足题意.②时,易知,满足题意.③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:①②④【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)利用正弦,余弦定理对式子化简求解即可;(2)利用余弦定理以及三角形的面积,求解三角形的周长即可.【详解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周长为【点睛】本题考查正弦定理以及余弦定理的应用,三角形的面积公式,也考查计算能力,属于基础题.18.(1)不是,见解析(2)(3)【解析】
(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;(2)由题意得,再对公差进行分类讨论,即可得答案;(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;【详解】(1)当时,又,所以.所以当时,,而,所以时,不是数列中的项,故数列不是为“数列”(2)因为数列是公差为的等差数列,所以.因为数列为“数列”所以任意,存在,使得,即有.①若,则只需,使得,从而得是数列中的项.②若,则.此时,当时,不为正整数,所以不符合题意.综上,.(3)由题意,所以,又因为,且数列为“数列”,所以,即,所以数列为等差数列.设数列的公差为,则有,由,得,整理得,①.②若,取正整数,则当时,,与①式对应任意恒成立相矛盾,因此.同样根据②式可得,所以.又,所以.经检验当时,①②两式对应任意恒成立,所以数列的通项公式为.【点睛】本题考查数列新定义题、等差数列的通项公式,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度较大.19.(1)分布列见解析,分布列见解析;(2)甲设备,理由见解析【解析】
(1)的可能取值为10000,11000,12000,的可能取值为9000,10000,11000,12000,计算概率得到分布列;(2)计算期望,得到,设甲、乙两设备一年内的维修次数分别为,,计算分布列,计算数学期望得到答案.【详解】(1)的可能取值为10000,11000,12000,,因此的分布如下100001100012000的可能取值为9000,10000,11000,12000,,,因此的分布列为如下9000100001100012000(2)设甲、乙两设备一年内的维修次数分别为,的可能取值为2,3,4,5,,,则的分布列为2345的可能取值为3,4,5,6,,,则的分布列为3456由于,,因此需购买甲设备【点睛】本题考查了数学期望和分布列,意在考查学生的计算能力和应用能力.20.(1)(2)【解析】
(1)先分别表示出,然后根据求解出的值,则的标准方程可求;(2)设出直线的方程并联立抛物线方程得到韦达定理形式,然后根据距离公式表示出并代入韦达定理形式,由此判断出为定值时的坐标.【详解】(1)由题意可得,焦点,,则,,∴解得.抛物线的标准方程为(2)设,设点,,显然直线的斜率不为0.设直线的方程为联立方程,整理可得,,∴,∴要使为定值,必有,解得,∴为定值时,点的坐标为【点睛】本题考查抛物线方程的求解以及抛物线中的定值问题,难度一般.(1)处理直线与抛物线相交对应的定值问题,联立直线方程借助韦达定理形式是常用方法;(2)直线与圆锥曲线的问题中,直线方程的设法有时能很大程度上起到简化运算的作用。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新书画展览合同3篇
- 柴油叉车租用合同范例
- 终止报销合同范例范例
- 平等自愿借款合同范例
- 武汉商贸职业学院《审计实务》2023-2024学年第一学期期末试卷
- 武汉软件工程职业学院《土地整治》2023-2024学年第一学期期末试卷
- 联名定制合同范例
- 英语作文销售合同范例
- 楼房赠予合同范例
- 卖茶赊销合同范例
- 义务教育科学课程标准(2022年版)解读
- 韶山旅游方案
- 吉林省延边州2023-2024学年高一上学期期末学业质量检测数学试题(解析版)
- 常用光电传感器介绍课件
- 在线客服质检述职报告
- JC/T2041-2020 聚氨酯灌浆材料
- 常州市2022-2023学年八年级上学期期末历史试卷(含答案解析)
- 粮油产品授权书
- 第3课 中古时期的欧洲(共51张PPT)
- 电玩城岗位流程培训方案
- 济南律师行业分析
评论
0/150
提交评论