




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022江苏省宿迁市幸福实验学校高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在区间上至少存在5个不同的零点,则正整数的最小值为()A.2 B.3 C.4 D.5参考答案:B【分析】直接利用正弦型函数的性质的应用求出结果.【详解】函数f(x)=sin(ωx)在区间[0,2π]上至少存在5个不同的零点,,根据题意得到只需要.最小整数为3.故选:B.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.2.函数的部分图象大致是(
)参考答案:D3.函数f(x)=()cosx的图象大致为()A. B.C. D.参考答案:C【考点】3O:函数的图象.【分析】利用函数的零点排除选项,然后通过特殊点的位置判断即可.【解答】解:函数f(x)=()cosx,当x=时,是函数的一个零点,属于排除A,B,当x∈(0,1)时,cosx>0,<0,函数f(x)=()cosx<0,函数的图象在x轴下方.排除D.故选:C.4.已知集合M={},若,使得成立,则称集合M是“”集.给出下列四个集合:
①M={};
②M={};
③M={}
④M={}.参考答案:略5.已知函数是上的奇函数,且在区间上单调递增,若,则
(
)A.
B.
C.
D.参考答案:B6.给出下列命题①若直线l与平面α内的一条直线平行,则l∥α;②若平面α⊥平面β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β;③?x0∈(3,+∞),x0?(2,+∞);④已知a∈R,则“a<2”是“a2<2a”的必要不充分条件.其中正确命题的个数是()A.4 B.3 C.2 D.1参考答案:C考点: 空间中直线与平面之间的位置关系;必要条件、充分条件与充要条件的判断.
分析: 对于①,考虑直线与平面平行的判定定理;对于②,考虑平面与平面垂直的性质定理;对于③,考虑两个集合间的包含关系;对于④,考虑充要条件中条件与结论的互推关系.解答: 解:对于①,直线与平面平行的判定定理中的条件是直线在平面外,而本命题没有,故错误;对于②,符合平面与平面垂直的性质定理,故正确;对于③,考虑两个集合间的包含关系(2,+∞)?(3,+∞),而x0∈(3,+∞),比如x=4,则4∈(2,+∞),故错误;对于④,由a2<2a可以得到:0<a<2,一定推出a<2,反之不一定成立,故“a<2”是“a2<2a”的必要不充分条件,此命题正确.综上知②④中的命题正确,故选C.点评: 本题考查直线与平面的平行关系的判定,面面垂直的性质定理,集合间的关系以及充要条件概念等,抓住概念的内涵与外延,是解决本类综合题的关键.7.(5分)已知集合A=x|x2﹣x﹣2<0},B={x|log4x<0.5},则()A.A∩B=?B.B?AC.A∩?RB=RD.A?B参考答案:B【考点】:集合的包含关系判断及应用.【专题】:集合.【分析】:先根据不等式的解法求出集合A,再根据对数的单调性求出集合B,根据子集的关系即可判断.
解:∵x2﹣x﹣2<0,∴(x﹣2)(x+1)<0,解得﹣1<x<2∴A=(﹣1,2),∵log4x<0.5=log42,∴0<x<2,∴B=(0,2),∴B?A,故选:B【点评】:本题考查了不等式的解法和函数的性质,以及集合的包含关系,属于基础题.8.下列函数中,既是偶函数又在单调递增的函数是
(
)A.
B.
C.
D.参考答案:B9.如图,矩形OABC内的阴影部分是由曲线,及直线,与x轴围成,向矩形内随机投掷一点,若落在阴影部分的概率为,则的值是A.
B.
C.
D.参考答案:B略10.已知角的终边过点P(-4k,3k)(),则的值是
(
)
A.
B.
C.或
D.随着k的取值不同其值不同参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=(a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在上恒成立,则a的取值范围是a>1;④对任意的x1<0,x2<0且x1≠x2,恒有f<.其中正确命题的序号是________.(写出所有正确命题的序号)参考答案:①③④12.如图,已知边长为的正方形,是边上一动点(与、不重合),连结,作交的外角平分线于.设,记,则函数的值域是__________.参考答案:如图,作,交延长线于,则,易证得,∴,设,则,∴,∴,由题知,所以,故的值域是.13.阅读如图所示的程序框图,输出的S值为参考答案:14.如图是某算法的程序框图,若任意输入中的实数,则输出的大于的概率为
;参考答案:15.已知函数f(x)=|x+﹣ax﹣b|(a,b∈R),当x∈[,2]时,设f(x)的最大值为M(a,b),则M(a,b)的最小值为.参考答案:【考点】函数的最值及其几何意义.【分析】由题意可得a≤0,b≤0,f(x)可取得最大值,即有f(x)=x+﹣ax﹣b,x∈[,2],求出导数和极值点,计算端点处的函数值,比较可得最大值M(a,b),即可得到所求最小值.【解答】解:由题意可得a≤0,b≤0,f(x)可取得最大值,即有f(x)=x+﹣ax﹣b,x∈[,2],f′(x)=1﹣﹣a=,由f′(x)=0可得x=(负的舍去),且为极小值点,则f()=﹣a﹣b,f(2)=﹣2a﹣b,由f()﹣f(2)=a<0,即有f(2)取得最大值,即有M(a,b)=﹣2a﹣b,则a≤0,b≤0时,M(a,b)≥.可得最小值为.故答案为:.16.平面向量a,b,e满足|e|=1,ae=1,be=2,|a-b|=2,则ab的最小值是
.参考答案:略17.如图,△ABC是简易遮阳棚,A、B是南北方向上的两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角的大小为
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,平面平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线PB与平面ABCD所成的角.参考答案:(Ⅰ)见解析(Ⅱ)60°【分析】(Ⅰ)取中点,连结、,得到故且,进而得到,利用线面平行的判定定理,即可证得平面.(Ⅱ)以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.【详解】(Ⅰ)在棱上存在点,使得平面,点为棱的中点.理由如下:取的中点,连结、,由题意,且,且,故且.所以,四边形为平行四边形.所以,,又平面,平面,所以,平面.(Ⅱ)由题意知为正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以为坐标原点建立如图空间直角坐标系,设,则由题意知,,,,,,设平面的法向量为,则由得,令,则,,所以取,显然可取平面的法向量,由题意:,所以.由于平面,所以在平面内的射影为,所以为直线与平面所成的角,易知在中,,从而,所以直线与平面所成的角为.【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.19.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点.(Ⅰ)求证:直线AF∥平面PEC;(Ⅱ)求PC与平面PAB所成角的正弦值.参考答案:考点:直线与平面所成的角;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)首先利用中点引出中位线,进一步得到线线平行,再利用线面平行的判定定理得到结论.(Ⅱ)根据直线间的两两垂直,尽力空间直角坐标系,再求出平面PAB的法向量,最后利用向量的数量积求出线面的夹角的正弦值.解答: 解:(Ⅰ)证明:作FM∥CD交PC于M.∵点F为PD中点,∴.∵点E为AB的中点.∴,又AE∥FM,∴四边形AEMF为平行四边形,∴AF∥EM,∵AF?平面PEC,EM?平面PEC,∴直线AF∥平面PEC.(Ⅱ)已知∠DAB=60°,进一步求得:DE⊥DC,则:建立空间直角坐标系,则P(0,0,1),C(0,1,0),E(,0,0),A(,﹣,0),B(,,0).所以:,.设平面PAB的一个法向量为:,.∵,则:,解得:,所以平面PAB的法向量为:∵,∴设向量和的夹角为θ,∴cosθ=,∴PC平面PAB所成角的正弦值为.点评:本题考查的知识要点:线面平行的判定的应用,空间直角坐标系的建立,法向量的应用,线面的夹角的应用,主要考查学生的空间想象能力和应用能力.20.已知函数f(x)=log4(ax2+2x+3).(1)若f(x)定义域为R,求a的取值范围;(2)若f(1)=1,求f(x)的单调区间.参考答案:(1)因为f(x)的定义域为R,所以ax2+2x+3>0对任意x∈R恒成立,显然a=0时不合题意,从而必有即a的取值范围是.
........................(6分)
(2)∵f(1)=1,∴log4(a+5)=1,因此a+5=4,a=-1,这时f(x)=log4(-x2+2x+3).由-x2+2x+3>0得-1<x<3,即函数定义域为(-1,3).令g(x)=-x2+2x+3.则g(x)在(-1,1)上单调递增,在(1,3)上单调递减,又y=log4x在(0,+∞)上单调递增,所以f(x)的单调递增区间是(-1,1),单调递减区间是(1,3)......................................(12分)21.己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=(1)求证:数列{}为等比数列;(2)若数列{bn}是等差数列,求实数t的值:(3)若数列{bn}是等差数列,前n项和为Sn,对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.参考答案:【考点】数列的求和;等比数列的通项公式.【分析】(1)数列{an}满足an>0,4(n+1)an2﹣nan+12=0,化为:=2×,即可证明.(2)由(1)可得:=,可得=n?4n﹣1.数列{bn}满足bn=,可得b1,b2,b3,利用数列{bn}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12Sn﹣a14n2=16bm,即可得出a1.【解答】(1)证明:数列{an}满足an>0,4(n+1)an2﹣nan+12=0,∴=an+1,即=2,∴数列{}是以a1为首项,以2为公比的等比数列.(2)解:由(1)可得:=,∴=n?4n﹣1.∵bn=,∴b1=,b2=,b3=,∵数列{bn}是等差数列,∴2×=+,∴=+,化为:16t=t2+48,解得t=12或4.(3)解:数列{bn}是等差数列,由(2)可得:t=12或4.①t=12时,bn==,Sn=,∵对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,∴×﹣a14n2=16×,∴=,n=1时,化为:﹣=>0,无解,舍去.②t=4时,bn==,Sn=,对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,∴×﹣a14n2=16×,∴n=4m,∴a1=.∵a1为正整数,∴=k,k∈N*.∴满足条件的所有整数a1的值为{a1|a1=2,n∈N*,m∈N*,且=k,k∈N*}.22.已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标系方程为x2+y2+2x﹣2y=0,直线l的参数方程为(t为参数),射线OM的极坐标方程为θ=(Ⅰ)求圆C和直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(I)根据已知中圆C的直角坐标系方程,可得圆C的极坐标方程;先由直线l的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论