版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年度河北省廊坊市回民中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.的外接圆的圆心为,半径为,且,则向量在方向上的投影为(
)A
B
C
D)参考答案:A2.已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为()A.7 B.8 C.9 D.10参考答案:C【考点】程序框图.【分析】模拟执行程序框图,根据题意,依次计算MOD(m,n)的值,由题意∈N*,从而得解.【解答】解:模拟执行程序框图,可得:n=2,i=0,m=48,满足条件n≤48,满足条件MOD(48,2)=0,i=1,n=3,满足条件n≤48,满足条件MOD(48,3)=0,i=2,n=4,满足条件n≤48,满足条件MOD(48,4)=0,i=3,n=5,满足条件n≤48,不满足条件MOD(48,5)=0,n=6,…∵∈N*,可得:2,3,4,6,8,12,16,24,48,∴共要循环9次,故i=9.故选:C.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的MOD(m,n)的值是解题的关键.3.的展开式中常数项为(
)A.
B.
C.
D.参考答案:B4.已知点满足,目标函数仅在点(1,0)处取得最小值,则的范围为()A.
B.
C.
D.参考答案:B5.已知函数的一部分图象如右图所示,如果,则(A).
(B).
(C).
(D).参考答案:A略6.若复数为纯虚数(为虚数单位),则实数的值是(
);A.
B.或
C.
或
D.参考答案:D7.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于A.-5
B.5
C.90
D.180参考答案:D8.三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,且长度分别为3、4、5,则三棱锥P-ABC外接球的体积是(
)A.
B.
C.
D.参考答案:C9.从一个三棱柱的6个顶点中任取4个做为顶点,能构成三棱锥的个数设为;过三棱柱任意两个顶点的直线(15条)中,其中能构成异面直线有对,则的取值分别为A.15,45
B.10,
30
C.12,
36
D.12,48参考答案:C10.已知(
)
参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在中,,,,则=
▲
.参考答案:712.等差数列中,已知,,则的取值范围是
▲
.参考答案:略13.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是
.参考答案:0.7514.设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是
参考答案:15.左手掷一粒骰子,右手掷一枚硬币,则事件“骰子向上为6点且硬币向上为正面”的概率为_____.参考答案:【分析】分别求得骰子向上为6点和硬币向上为正面的概率,由独立事件概率公式即可求解.【详解】骰子向上为6点的概率为;硬币向上为正面的概率为;由独立事件概率公式可知“骰子向上为6点且硬币向上为正面”的概率为,故答案为:.【点睛】本题考查了古典概型概率求法,独立事件概率乘法公式应用,属于基础题.16.是分别经过A(1,1),B(0,-1)两点的两条平行直线,当间的距离最大时,直线的方程是
.参考答案:解:当两条平行直线与A、B两点连线垂直时两条平行直线的距离最大.
因为A(-1,1)、B(2,-4),所以,所以两平行线的斜率为,所以直线的方程是,即。17.定义某种新运算:的运算原理如右边流程图所示,则54-34=
.参考答案:9三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数的图像过点(-1,2),且在点(-1,f(-1))处的切线与直线x-5x+1=0垂直。(1)求实数b和c的值。(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值。参考答案:19.已知椭圆C:,(a>b>0)的离心率为,其中左焦点F(﹣2,0).(Ⅰ)求出椭圆C的方程;(Ⅱ)若直线y=x+m与曲线C交于不同的A、B两点,且线段AB的中点M在曲线x2+2y=2上,求m的值.参考答案:考点:椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)首先,根据椭圆的离心率和左焦点坐标,可以确定a=2,b=2,从而确定其椭圆的标准方程;(Ⅱ)首先,设A,B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),然后,联立方程组,利用韦达定理,建立等式,求解即可.解答: 解:(Ⅰ)由题意得,=,c=2,解得:a=2,b=2,所以椭圆C的方程为:+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)设点A,B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由,消去y得3x2+4mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由△=96﹣8m2>0,解得﹣2<m<2,所以x0==﹣,y0=x0+m=,因为点M(x0,y0)在曲线x2+2y=2上,所以,即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题重点考查了椭圆的标准方程、椭圆的简单几何性质、直线与椭圆的位置关系等知识,属于中档题.20.(13分)设二次函数f(x)=ax2+bx+c(a,b,c∈R).(1)若f(x)满足下列条件:①当x∈R时,f(x)的最小值为0,且f(x﹣1)=f(﹣x﹣1)恒成立;②当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立,求f(x)的解析式;(2)若对任意x1,x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立.参考答案:考点: 函数恒成立问题;二次函数的性质.专题: 函数的性质及应用.分析: (1)由f(﹣1+x)=f(﹣1﹣x)可得二次函数f(x)=ax2+bx+c(a,b,c∈R)的对称轴为x=﹣1,于是b=2a,再由f(x)min=f(﹣1)=0,可得c=a,从而可求得函数f(x)的解析式;(2)令g(x)=f(x)﹣[f(x1)+f(x2)],可证得g(x1)g(x2)<0,由零点存在定理可知存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立.解答: 解:(1)∵x∈(0,5)时,都有x≤f(x)≤2|x﹣1|+1恒成立,∴1≤f(1)≤2|1﹣1|+1=1,∴f(1)=1;∵f(﹣1+x)=f(﹣1﹣x),∴f(x)=ax2+bx+c(a,b,c∈R)的对称轴为x=﹣1,∴﹣=﹣1,b=2a.∵当x∈R时,函数的最小值为0,∴a>0,f(x)=ax2+bx+c(a,b,c∈R)的对称轴为x=﹣1,∴f(x)min=f(﹣1)=0,∴a=c.∴f(x)=ax2+2ax+a.又f(1)=1,∴a=c=,b=.∴f(x)=x2+x+=(x+1)2;(2)令g(x)=f(x)﹣[f(x1)+f(x2)],则g(x1)=f(x1)﹣[f(x1)+f(x2)]=[f(x1)﹣f(x2)],g(x2)=f(x2)﹣[f(x1)+f(x2)]=[f(x2)﹣f(x1)],∵f(x1)≠f(x2)∴g(x1)g(x2)<0,所以g(x)=0在(x1,x2)内必有一个实根,即存在x0∈(x1,x2)使f(x0)=[f(x1)+f(x2)]成立.点评: 本题主要考查二次函数求解析式,里面有三个未知数所以要寻求三个条件来解,同时考查了学生分析问题和解决问题的能力,以及运算求解的能力.21.(本小题满分13分)已知函数满足,其中a>0,a≠1.
(1)对于函数,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,的值为负数,求的取值范围。参考答案:解:设,则,所以,当时,是增函数,是减函数且,所以是增函数,同理,当时,也是增函数又由得:所以,解得:(2)因为是增函数,所以时,,所以解得:且22.已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点F2时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的应用;直线与圆锥曲线的关系.【分析】(1)把F2代入直线方程求得m,则直线的方程可得.(2)设A(x1,y1),B(x2,y2).直线与椭圆方程联立消去x,根据判别式大于0求得m的范围,且根据韦达定理表示出y1+y2和y1y2,根据,=2,可知G(,),h(,),表示出|GH|2,设M是GH的中点,则可表示出M的坐标,进而根据2|MO|<|GH|整理可得x1x2+y1y2<0把x1x2和y1y2的表达式代入求得m的范围,最后综合可得答案.【解答】解:(Ⅰ)解:因为直线l:x﹣my﹣=0,经过F2(,0),所以=,得m2=2,又因为m>1,所以m=,故直线l的方程为x﹣y﹣1=0.(Ⅱ)解:设A(x1,y1),B(x2,y2).由,消去x得2y2+my+﹣1=0则由△=m2﹣8(﹣1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度新能源企业聘用合同范本4篇
- 二零二五年度人工智能辅助软件服务合同模板2篇
- 二零二五美容院美容护理技术培训合同3篇
- 《短视频编剧:选题构想+脚本制作+剧本策划+镜头拍摄》课件 第5章 了解剧本:创作优剧本的基础
- 二零二五年度某局劳务分包结算与人才培养计划合同4篇
- 二零二五农机绿色生产技术研发与应用合同4篇
- 二零二五年度棉被品牌授权生产及销售合同4篇
- 二零二五年度智能制造名义合伙人合同4篇
- 二零二五版南京海事法院海洋石油开发合同4篇
- (必会)公路水运工程助理试验检测师《交通工程》近年考试真题题库(含答案解析)
- 安徽省定远重点中学2024-2025学年第一学期高二物理期末考试(含答案)
- 教育教学质量经验交流会上校长讲话:聚焦课堂关注个体全面提升教育教学质量
- 2024人教新目标(Go for it)八年级英语上册【第1-10单元】全册 知识点总结
- 剧本杀店长合同范例
- 华中师范大学第一附中2025届高考仿真模拟数学试卷含解析
- 农村自建房施工合同模板
- GB/T 44731-2024科技成果评估规范
- 影视动画设计与制作合同
- 2023学年广东省深圳实验学校初中部九年级(下)开学语文试卷
- 企业新员工培训师带徒方案
- 2025届河南省郑州一中高三物理第一学期期末学业水平测试试题含解析
评论
0/150
提交评论