版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年度安徽省安庆市熙湖中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知长方体中,,为中点,则异面直线与所形成角的余弦值为A.
B.
C.
D.
参考答案:B2.已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O﹣ABC的高为2,点D是线段BC的中点,过点D作球O的截面,则截面积的最小值为()A. B.4π C. D.3π参考答案:A【考点】LG:球的体积和表面积.【分析】设正△ABC的中心为O1,连结O1O、O1C、O1D、OD.根据球的截面圆性质、正三角形的性质与勾股定理,结合题中数据算出OD,而经过点D的球O的截面,当截面与OD垂直时截面圆的半径最小,相应地截面圆的面积有最小值,由此算出截面圆半径的最小值,从而可得截面面积的最小值.【解答】解:设正△ABC的中心为O1,连结O1O、O1C、O1D、OD,∵O1是正△ABC的中心,A、B、C三点都在球面上,∴O1O⊥平面ABC,结合O1C?平面ABC,可得O1O⊥O1C,∵球的半径R=3,O1O=2,∴Rt△O1OC中,O1C=.又∵D为BC的中点,∴Rt△O1DC中,O1D=O1C=.∴Rt△OO1D中,OD==.∵过D作球O的截面,当截面与OD垂直时,截面圆的半径最小,∴当截面与OD垂直时,截面圆的面积有最小值.此时截面圆的半径r==,可得截面面积为S=πr2=.故选A.3.若m,n是两条不同的直线,α,β,γ是三个不同的平面,下些说法正确的是()A.若m?β,α⊥β,则m⊥α B.若m⊥β,m∥α,则α⊥βC.若α∩γ=m,β∩γ=n,m∥n,则α∥β D.若α⊥γ,α⊥β,,则γ⊥β参考答案:B【考点】空间中直线与平面之间的位置关系.【分析】对于A,若m?β,α⊥β,则m与α平行、相交或m?α;对于B,根据线面垂直的判定定理进行判断;对于C,若αlγ=m,βlγ=n,m∥n,则α∥β或α与β相交;对于D,若α⊥γ,α⊥β,则γ与β相交或平行.【解答】解:若m?β,α⊥β,则m与α平行、相交或m?α,故A不正确;若m⊥α,m∥β,则α⊥β,因为m∥β根据线面平行的性质在β内至少存在一条直线与m平行,根据线面垂直的判定:如果两条平行线中的一条垂直于这个平面,那么另一条也垂直于该平面,故B正确;若αlγ=m,βlγ=n,m∥n,则α∥β或α与β相交,故C不正确;若α⊥γ,α⊥β,则γ与β相交或平行,故D不正确.故选B.4.经过点,并且在两坐标轴上的截距相等的直线有(
)A.0条 B.1条 C.2条 D.3条参考答案:C【分析】若直线过原点,可知满足题意;直线不过原点时,利用直线截距式,代入点的坐标求得方程,从而得到结果.【详解】若直线过原点,则过的直线方程为:,满足题意若直线不过原点,设直线为:代入,解得:
直线方程为:满足题意的直线有条本题正确选项:【点睛】本题考查在坐标轴截距相等的直线的求解,易错点是忽略直线过原点的情况.5.若f(x)符合:对定义域内的任意的,都有,且当时,,则称f(x)为“好函数”,则下列函数是“好函数”的是A.
B.
C.
D.参考答案:B6.已知α的终边与单位圆的交点,则sinα·tanα=()A.
B.
C.
D.参考答案:C7.若函数的一个正数零点附近的函数值用二分法逐次计算,得到如下参考数据:ks5uf(1)=-2f(1.5)=0.625f(1.25)=-0.984f(1.375)=-0.260f(1.438)=0.165f(1.4065)=-0.052那么方程的一个近似根(精确到0.1)为A.1.2 B.1.3 C.1.4 D.1.5参考答案:C8.“微信运动”是腾讯开发的一个记录跑步或行走情况(步数里程)的公众号用户通过该公众号可查看自己某时间段的运动情况.某人根据2018年1月至2018年11月期间每月离步的里程(单位:十公里)的数据绘制了下面的折线图.根据该折线图,下列结论正确的是(
)A.月跑步里程逐月增加B.月跑步里程最大值出现在10月C.月跑步里程的中位数为5月份对应的里程数D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳参考答案:BCD【分析】由对折线图数据的分析处理逐一检验选项即可得解.【详解】由折线图可知:月跑步里程逐月不是递增,故选项A错误;月跑步里程最大值出现在10月,故选项B正确;月跑步里程的中位数为5月份对应的里程数,故选项C正确;1月至5月的月跑步平均里程相对6月至11月,波动性更小、变化比较平稳,故选项D正确.故选:B,C,D.【点睛】本题考查了对折线图数据的分析处理能力,属于基础题.9.下列几何体中,正视图、侧视图、俯视图都相同的几何体是参考答案:D10.已知函数,,设函数,且函数的零点均在区间内,则的最小值为()A.11
B.10
C.9
D.8参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.幂函数f(x)=xα经过点P(2,4),则f()=
.参考答案:2【考点】幂函数的概念、解析式、定义域、值域.【分析】利用幂函数的性质求解.【解答】解:∵幂函数f(x)=xα经过点P(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f()=()2=2.故答案为:2.12.函数的单调递减区间是______.参考答案:试题分析:因为;所以由可得所以函数的递减区间为。考点:三角函数的性质.13.如果函数f(x)=x2+(m-1)x+1在区间上为减函数,则m的取值范围________参考答案:14.计算的结果是
.参考答案:2【考点】对数的运算性质;有理数指数幂的化简求值.【分析】利用指数幂的运算法则、对数的运算法则和换底公式即可得出.【解答】解:运算=1﹣++lg2+lg5=1﹣0.4+0.4+1=2.故答案为2.15.若数列{an}满足an+1=则a20的值是
参考答案:略16.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6的值,当x=-4时,v4的值为
参考答案:22017.袋里装有5个球,每个球都记有1~5中的一个号码,设号码为x的球质量为(x2-5x+30)克,这些球以同等的机会(不受质量的影响)从袋里取出.若同时从袋内任意取出两球,则它们质量相等的概率是___
.参考答案:1/5略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=3+x,每日的销售额S(单位:万元)与日产量x的函数关系式,已知每日的利润L=S-C,且当x=2时,L=3.(1)求k的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.参考答案:(1)(2)当日产量为吨时,每日的利润可以达到最大值万元.试题分析:(1)由题意先列出每日的利润关于的函数的解析式,时,,代入解析式即可求出的值;(2)当时,利用基本不等式计算每日利润的的最大值,当时,,由此可求出每日利润和最大值.试题解析:(1)由题意得,因为时,,所以所以(2)当时,当且仅当,即时取等号.当时,,所以当时,取得最大值,所以当日产量为吨时,每日的利润可以达到最大值万元考点:1.函数建模问题;2.基本不等式.19.已知函数是定义在R上的偶函数.(1)求的值;(2)判断并用单调性定义证明函数在上的单调性;(3)求不等式的解集.参考答案:解:(1)(2)增函数(3)略20.已知sinα=,cosβ=﹣,α∈(,π),β∈(π,),求cos(α﹣β)的值.参考答案:【考点】GP:两角和与差的余弦函数.【分析】运用同角的平方关系,求得cosα,sinβ,再由两角差的余弦公式,计算即可得到所求值.【解答】解:由sinα=,cosβ=﹣,α∈(,π),β∈(π,),则cosα=﹣=﹣,sinβ=﹣=﹣,则有cos(α﹣β)=cosαcosβ+sinαsinβ=﹣+=.21.(本小题满分12分)已知集合,,。(Ⅰ)求,;(Ⅱ)若,求实数的取值范围。参考答案:(Ⅰ);(Ⅱ).(Ⅰ),
…….(2分)因为………(4分)所以
……….(6分)(Ⅱ)由(1)知,,
又恒成立,故即
………….(12分)22.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案:【考点】根据实际问题选择函数类型;函数的最值及其几何意义.【分析】(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.【解答】解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=.(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.【答案】【解析】【考点】函数单调性的判断与证明;函数解析式的求解及常用方法;函数奇偶性的判断.【分析】(1)利用f(﹣1)=0和函数f(x)的值域为[0,+∞),建立方程关系,即可求出a,b,从而确定F(x)的表达式;(2)在(1)的条件下,当x∈[﹣2,2]时,利用g(x)=f(x)﹣kx的单调区间与对称轴之间的关系建立不等式进行求解即可.(3)利用mn<0,m+n>0,a>0,且f(x)是偶函数,得到b=0,然后判断F(m)+F(n)的取值.【解答】解:(1)∵f(﹣1)=0,∴a﹣b+1=0,①∵函数f(x)的值域为[0,+∞),∴a>0且判别式△=0,即b2﹣4a=0,②由①②得a=1,b=2.∴f(x)=ax2+bx+1=x2+2x+1.∴F(x)=.(2)g(x)=f(x)﹣kx=x2+(2﹣k)x+1,函数的对称轴为x=,要使函数g(x)=f(x)﹣kx,在x∈[﹣2,2]上是单调函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年木地板原材采购合同304402025采购版3篇
- 2025年度南京个人住宅房产买卖合同规范文本
- 2025年鸡蛋市场调研与采购合作合同模板3篇
- 2025年度数控打磨工劳动合同与职业技能鉴定考核协议4篇
- 二零二五年度出租房屋用电安全责任追究合同样本4篇
- 2025年度房地产项目施工总承包合同范本2篇
- 2025年南山砖厂市场拓展与销售渠道建设合同4篇
- 2025年度新型储藏室与车位投资合作合同范本4篇
- 二零二五年度充电桩充电桩与停车场合作运营合同4篇
- 2025版IDC数据中心服务器托管与数据中心设备维修服务合同3篇
- 2024人教新目标(Go for it)八年级英语下册【第1-10单元】全册 知识点总结
- 垃圾车驾驶员聘用合同
- 2024年大宗贸易合作共赢协议书模板
- 新闻记者证600道考试题-附标准答案
- 变压器搬迁施工方案
- 单位转账个人合同模板
- 八年级语文下册 成语故事 第十五课 讳疾忌医 第六课时 口语交际教案 新教版(汉语)
- 中考语文二轮复习:记叙文阅读物象的作用(含练习题及答案)
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- EPC项目采购阶段质量保证措施
评论
0/150
提交评论