版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.以下列各组数据为边长作三角形,其中能组成直角三角形的是().A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,132.下列各式与相等的是()A. B. C. D.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是()A.诚 B.信 C.自 D.由5.下列命题中,为真命题的是()A.直角都相等 B.同位角相等 C.若,则 D.若,则6.若等腰三角形的顶角为,则它的一个底角度数为A. B. C. D.7.下列长度的三条线段可以组成三角形的是()A.3,4,2 B.12,5,6C.1,5,9 D.5,2,78.如图,CD⊥AB于点D,点E在CD上,下列四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,将其中两个作为条件,不能判定△ADC≌△EDB的是A.①② B.①④ C.②③ D.②④9.近似数0.13是精确到()A.十分位 B.百分位 C.千分位 D.百位10.若分式方程无解,则的值为()A.5 B. C. D.二、填空题(每小题3分,共24分)11.用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为2a+b的大长方形,需要B类卡片_____张.12.若分式的值为0,则x的值等于________.13.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交的延长线于点F,垂足为点E,且BE=3,则AD=____.14.计算:=_____.15.已知点P(2m+4,m﹣1)在x轴上,点P1与点P关于y轴对称,那么点P1的坐标是_____.16.如图在中,是的中线,是上的动点,是边上动点,则的最小值为______________.17.已知,其中为正整数,则__________.18.关于的分式方程的解为正数,则的取值范围是___________.三、解答题(共66分)19.(10分)某校团委举办了一次“中国梦我的梦”演讲比赛满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达到9分以上(含9分)为优秀.如图所示是这次竞赛中甲、乙两组学生成绩分布的条形统计图.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲63.4190%20%乙7.11.6980%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是______组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.20.(6分)如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.21.(6分)如图,已知AB∥CD,AC平分∠DAB.求证:△ADC是等腰三角形.22.(8分)(1)计算:;(2)先化简,再求值:,其中a=﹣2,b=.23.(8分)已知,在中,,如图,点为上的点,若.(1)当时,求的度数;(2)当时,求的长;(3)当,时,求.24.(8分)根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;1×1.(1)将以上各乘积分别写成“a2﹣b2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;(2)用含有a,b的式子表示(1)中的一个一般性的结论(不要求证明);(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为%,其中p≠q,比较哪种方案提价最多?25.(10分)如图:等边中,上,且,相交于点,连接.(1)证明.(2)若,证明是等腰三角形.26.(10分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克;(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A、;B、;C、;D、.根据勾股定理7,24,25能组成直角三角形.故选C.考点:勾股定理的逆定理.2、B【分析】本题关键在于化简,需要逐一将A、B、C、D选项进行化简,看最终化简的结果是否与相等,如此即可得出答案.【详解】选项A,,与原式不相等,故排除;选项B,,与原式相等;选项C,已化简为最简,与原式不相等,故排除;选项D,,与原式不相等,故排除;综上,本题选B.【点睛】本题关键在于对各个选项进行化简,将化简的结果与原式相比,即可得出最终答案.3、C【解析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.4、D【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的概念可知“由”是轴对称图形,故选:D.【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、A【分析】根据直角、同位角的性质,平方与不等式的性质依次分析即可.【详解】A.直角都相等90°,所以此项正确;B.两直线平行,同位角相等,故本选项错误;C.若,则或,故本选项错误;D.若,则,本项正确,故选A.【点睛】本题考查的是命题与定理,熟知各项性质是解答此题的关键.6、B【分析】由已知顶角为80°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【详解】解:∵等腰三角形的顶角为80°,
∴它的一个底角为(180°-80°)÷2=50°.
故选B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.7、A【解析】根据三角形三边关系即可解题.【详解】解:根据三角形三边关系,A.3,4,2,正确B.12,5,6,错误,5+612,C.1,5,9,错误,1+59,D.5,2,7,错误,5+2=7,故选A.【点睛】本题考查了三角形三边关系,属于简单题,熟悉概念是解题关键.8、C【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.【详解】A:∵CD⊥AB∴∠CDA=∠BDE又∵AD=ED;②∠A=∠BED∴△ADC≌△EDB(ASA)所以A能判断二者全等;B:∵CD⊥AB∴△ADC与△EDB为直角三角形∵AD=ED,AC=EB∴△ADC≌△EDB(HL)所以B能判断二者全等;C:根据三个对应角相等无法判断两个三角形全等,所以C不能判断二者全等;D:∵CD⊥AB∴∠CDA=∠BDE又∵∠A=∠BED,AC=EB∴△ADC≌△EDB(AAS)所以D能判断二者全等;所以答案为C选项.【点睛】本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.9、B【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【详解】近似数0.13是精确到百分位,
故选B.【点睛】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.10、B【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=1,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:3x−2-m=2x+2,整理得x=m+4由分式方程无解,得到x+1=1,即x=−1,将x=−1代入整式方程得:-1=m+4,解得:m=−5,故选:B.【点睛】此题考查了分式方程的解,分式方程无解即为最简公分母为1.二、填空题(每小题3分,共24分)11、1.【分析】先求出长为3a+2b,宽为2a+b的矩形面积,然后对照A、B、C三种卡片的面积,进行组合.【详解】解:长为3a+2b,宽为2a+b的矩形面积为(3a+2b)(2a+b)=6a2+1ab+2b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片6张,B类卡片1张,C类卡片2张.故答案为:1.【点睛】本题主要考查多项式乘法的应用,正确的计算多项式乘法是解题的关键.12、.【分析】分式的值为零,分子等于零且分母不等于零.【详解】解:由题意可得解得:故答案为:.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.13、1【分析】由题意易证△ACD≌△BCF,△BAE≌△FAE,然后根据三角形全等的性质及题意可求解.【详解】解:AD平分∠BAC,BE⊥AD,∠BAE=∠FAE,∠BEA=∠FEA=90°,AE=AE,△BAE≌△FAE,BE=EF,BE=3,BF=1,∠ACB=90°,∠F+∠FBC=90°,∠EAF+∠F=90°,∠ACD=∠BCF=90°,∠FBC=∠DAC,AC=BC,△ACD≌△BCF,AD=BF=1;故答案为1.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等判定的条件是解题的关键.14、【解析】根据算术平方根的定义求解可得.【详解】解:=故答案为:【点睛】本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.15、(﹣6,0)【分析】依据点P(2m+4,m﹣1)在x轴上,即可得到m=1,进而得出P(6,0),再根据点P1与点P关于y轴对称,即可得到点P1的坐标是(﹣6,0).【详解】解:∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,∴m=1,∴P(6,0),又∵点P1与点P关于y轴对称,∴点P1的坐标是(﹣6,0),故答案为:(﹣6,0).【点睛】本题主要考查了轴上点的坐标性质以及关于轴对称的点坐标性质,得出的值是解题关键.16、【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据等腰三角形“三线合一”得出BD的长和AD⊥BC,再利用勾股定理求出AD,利用“等面积法”结合垂线段最短进一步求出最小值即可.【详解】如图,作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是△ABC的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理可得:AD=,∴,∴,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短可得:CM≥CN,即:CF+EF≥,∴CF+EF的最小值为:,故答案为:.【点睛】本题主要考查了几何图形中最短路线问题,关键是熟练运用轴对称性质找出相应的线段进行求解.17、7、8或13【分析】已知等式左边利用多项式乘以多项式法则变形,利用多项式相等的条件确定出的值即可.【详解】解:,,,均为正整数,,又,,.故答案为:7、8或13.【点睛】此题考查了多项式乘以多项式,以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解本题的关键18、且.【分析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解为正数,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案为m>2且m≠1.三、解答题(共66分)19、(1)甲组平均分6.7,乙组中位数7.5;(2)甲;(3)乙组的平均分高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.(答案不唯一)【分析】(1)先根据条形统计图写出甲乙两组的成绩,然后分别计算甲的平均数,乙的中位数;
(2)比较两组的中位数进行判断;
(3)通过乙组的平均数、中位数进行说明.【详解】解:(1)甲组:3,6,6,6,6,6,7,8,9,10,甲组平均数;
乙组:5,5,6,7,7,8,8,8,8,9,乙组中位数;(2)因为甲组的中位数为6,乙组的中位数是7.5,所以7分在甲组排名属中游略偏上,故小明是甲组的学生;(3)两条支持乙组同学观点的理由:①乙组的平均数高于甲组;②乙组的中位数高于甲组,所以乙组的成绩要好于甲组.【点睛】本题考查了条形统计图:从条形图可以很容易看出数据的大小,便于比较.也考查了中位数和平均数.20、(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,见解析;(3)∠BED=n∠BFD.【分析】(1)过点E,F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,从而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=2∠BFD;(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根据∠ABF=∠ABE,∠CDF=∠CDE即可得到结论;(3)同(1)(2)的方法即可得出∠F与∠E的等量关系.【详解】解:(1)过点E、F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=2∠BFD.故答案为:∠BED=2∠BFD;(2)∠BED=3∠BFD.证明如下:同(1)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)同(1)(2)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=n∠BFD.【点睛】本题主要考查了平行线的性质和角平分线、n等分线的运用,解决问题的关键是作辅助线构造内错角,依据平行线的性质进行推导计算,解题时注意类比思想和整体思想的运用.21、证明见解析.【分析】由平行线的性质和角平分线定义求出∠DAC=∠DCA,即可得出结论.【详解】∵AB∥CD,∴∠BAC=∠DCA.∵AC平分∠DAB,∴∠BAC=∠DAC,∴∠DAC=∠DCA,∴△ADC是等腰三角形.【点睛】此题考查等腰三角形的判定,平行线的性质,熟练掌握等腰三角形的判定和平行线的性质是解题的关键.22、(1)11;(2),﹣.【分析】(1)先逐项化简,再算加减即可;(2)先根据分式的运算法则化简,再把a=﹣2,b=代入计算.【详解】解:(1)=﹣1+3﹣(﹣8)+1=﹣1+3+8+1=11;(2)=÷[﹣]=()=÷==,当a=﹣2,b=时,原式==﹣.【点睛】本题考查了实数的混合运算,以及分式的化简求值,熟练掌握运算法则是解答本题的关键.23、(1)∠CAD=55°;(2);(3)S△ABC=16【分析】(1)通过同角的余角相等,解得;(2)通过勾股定理求出AC的长,再利用三角形的面积公式求出AD的长;(3)通过等腰直角三角形的性质求出BC和AD的长度,即可求出△ABC的面积.【详解】(1)∵∴∵∴∴∴(2)∵∴在中,根据勾股定理得∵∴∴解得(3)∵,∴∴是等腰直角三角形∵∴AD垂直平分BC,∴,∴【点睛】本题考查了三角形的综合问题,掌握同角的余角相等、勾股定理以及三角形的面积公式是解题的关键.24、(1)答案见解析;(2)对于:ab,当|b﹣a|越大时,ab的值越小;(3)方案2提价最多.【分析】(1)根据题目中的式子和平方差公式可以解答本题;(2)根据(1)中的计算结果,可以写出相应的结论;(3)根据题意列出代数式,根据(2)中的结论可以解答本题.【详解】(1)11×29=(1﹣9)×(1+9)=12﹣92,12×28=(1﹣8)×(1+8)=12﹣82,13×27=(1﹣7)×(1+7)=12﹣72,14×26=(1﹣6)×(1+6)=12﹣6215×25=(1﹣5)×(1+5)=12﹣52,16×24=(1﹣4)×(1+4)=12﹣4217×23=(1﹣3)×(1+3)=12﹣32,18×22=(1﹣2)×(1+2)=12﹣22,19×21=(1﹣1)×(1+1)=12﹣12,1×1=(1+2)×(1﹣2)=12﹣22,11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<1×1;(2)由(1)可得:对于ab,当|b﹣a|越大时,ab的值越小;(3)设原价为a,则方案1:a(1+p%)(1+q%)方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泰州学院《工程项目风险管理与保险》2023-2024学年第一学期期末试卷
- 【9英RJ月考】淮北市二中联考2024-2025学年九年级上学期12月月考英语试题
- 2023年超声波大口径井径检测设备项目筹资方案
- Starter Unit 3 Welcome!Section A教学实录-2024-2025学年人教版(2024)七年级英语上册
- 泰山科技学院《民间文化欣赏》2023-2024学年第一学期期末试卷
- 泰山护理职业学院《社会学专业论文写作》2023-2024学年第一学期期末试卷
- 舟山浙江舟山市司法局招聘编外工作人员历年参考题库(频考版)含答案解析
- 名校联盟浙江省温州市苍南县龙港镇第二中学七年级历史与社会上册 34 草原人家(第一课时)逐水草而居 教学实录
- 福建2025年福建教育学院招聘高层次人才历年参考题库(频考版)含答案解析
- 珠海2024年广东珠海市统计局招聘合同制职员历年参考题库(频考版)含答案解析
- 投标书范本完整版本
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读 课件
- 防艾小课堂学习通超星期末考试答案章节答案2024年
- 第七单元《长方形和正方形 解决问题》(说课稿)-2024-2025学年三年级上册数学人教版
- 南京工业大学《大地测量学基础》2023-2024学年第一学期期末试卷
- 人工智能企业团队构建及岗位设置方案
- 2024秋期河南开放大学专科《民间文学与文化》一平台无纸化考试(作业练习1至3+我要考试)试题及答案
- 安徽省芜湖市2023-2024学年高一上学期期末考试 数学 含解析
- 新高考数学题型全归纳之排列组合专题20定序问题(原卷版+解析)
- 泵的变频调速技术考核试卷
- 商务数据分析基础与应用(微课版)王华新课后题答案
评论
0/150
提交评论