人教版数学八年级上册11三角形的边(三课时) 教案_第1页
人教版数学八年级上册11三角形的边(三课时) 教案_第2页
人教版数学八年级上册11三角形的边(三课时) 教案_第3页
人教版数学八年级上册11三角形的边(三课时) 教案_第4页
人教版数学八年级上册11三角形的边(三课时) 教案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.认识三角形的边、内角、顶点,能用符号语言表示三角形;理解三角形的分类.2.掌握三角形三边关系,会判断已知的三条线段能否组成三角形,会求三角形第三边的取值范围.▲重点理解三角形三边关系.▲难点三角形三边关系的运用.◆活动1新课导入情景导入:如图,从教室到食堂有两条路可走,你会走哪条?为什么?◆活动2探究新知1.如图:提出问题:(1)哪些图形是三角形?(2)三角形有什么特点?什么叫三角形?(3)在三角形的概念中,你认为不可或缺的要素是什么?(4)请指出图①中三角形的顶点、角、边.学生完成并交流展示.2.教材P2思考.提出问题:(1)三角形除了按角分类,还可以按什么分?这样分的依据是什么?(2)按(1)的方法分类,分成的三角形有哪些特殊的三角形?学生完成并交流展示.3.教材P3探究.提出问题:(1)在△ABC中,从点B出发,沿三角形的边到点C,有几条线路可以选择?每条线路的长有什么关系?从中你能得出什么结论?(2)从三角形的任意一个顶点出发到另一个顶点,上述结论都成立吗?学生完成并交流展示.◆活动3知识归纳1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做__三角形__.2.三角形的分类:(1)按照三个内角的大小,可将三角形分为__锐角三角形__、__直角三角形__、__钝角三角形__.(2)三角形按边的相等关系分类:三角形eq\b\lc\{(\a\vs4\al\co1(三边都不相等的三角形,等腰三角形\b\lc\{(\a\vs4\al\co1(底边和腰不相等的等腰三角形,等边三角形))))3.三角形两边的和__大于__第三边,三角形两边的差__小于__第三边.◆活动4例题与练习例1如图,在△ABC中,点D,E分别在BC,AB上,AD交CE于点F.图中AC是哪些三角形的边?∠B是哪些三角形的内角?解:图中AC是△AFC,△AEC,△ADC,△ABC的边;∠B是△ABC,△ABD,△EBC的内角.例2教材P3例.例3已知在等腰三角形中,一边的长为9cm,另一边的长为4cm.小伟:“这个三角形的周长为17cm.”小宇:“你说的不对,这个三角形的周长为22cm.”同学们,你认为谁说的对呢?说说你的理由.解:小宇说的对,∵当腰长为4cm时,4+4<9,不能组成三角形,∴该等腰三角形的腰长为9cm,周长为9+9+4=22(cm).练习1.教材P4练习第1,2题.2.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.3.已知△ABC的两边AB=2cm,AC=9cm.(1)求第三边BC的长的取值范围;(2)若第三边BC的长是偶数,求BC的长;(3)若△ABC是等腰三角形,求其周长.解:(1)7cm<BC<11cm;(2)BC的长是8cm或10cm;(3)∵△ABC是等腰三角形,∴BC=9cm或BC=2cm.当BC=2cm时,2+2<9,不能组成三角形,∴BC=9cm.∴△ABC的周长为2+9+9=20(cm).◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.三角形的概念.2.三角形的分类.3.三角形的三边关系.1.作业布置(1)教材P9习题11.1第1题;(2)《名师测控》对应课时练习.2.教学反思11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.掌握三角形的高、中线、角平分线的性质,并会运用这些性质解决问题.2.准确画出三角形的高、中线与角平分线.3.了解三角形具有稳定性.▲重点三角形的高、中线与角平分线的性质.▲难点三角形的高、中线与角平分线的应用.◆活动1新课导入问题1:图中共有多少个三角形?请将它们全部用符号表示出来.答:图中共有5个三角形.分别是△ABC,△ABD,△ACD,△ADE,△CDE.问题2:利用长为2cm,3cm,4cm,5cm的四条线段可以组成几个三角形?为什么?答:可以组成3个三角形.从四条线段中任选三条,共有四种选法:①2cm,3cm,4cm;②3cm,4cm,5cm;③2cm,3cm,5cm;④2cm,4cm,5cm.其中满足“三角形两边之和大于第三边”的只有第①,②,④这三组.◆活动2探究新知1.给出一个△ABC,请你作出该三角形的高.提出问题:(1)如何作三角形的高?(2)一个三角形有几条高?(3)能用折纸的方法折出你准备好的三角形的高吗?(4)通过画不同的三角形的高,你能发现什么特点?三角形的高一定在三角形的内部吗?学生完成并交流展示.2.给出一个△ABC,请你作出该三角形的中线.提出问题:(1)如何作一个三角形的中线?(2)一个三角形有几条中线?(3)分别作出不同三角形的中线,你有什么发现?学生完成并交流展示.3.给出一个△ABC,请你作出该三角形的角平分线.提出问题:(1)如何作一个三角形的角平分线?(2)一个三角形有几条角平分线?(3)三角形的角平分线与一个角的平分线有何区别?(4)不同的三角形,它们的角平分线有何特点?学生完成并交流展示.4.教材P6探究.提出问题:(1)在图(1),(2),(3)中,哪些能扭动?哪些不能扭动?(2)图(3)与图(2)的区别是对角添加了一根木条,达到了什么目的?说明了什么?学生完成并交流展示.◆活动3知识归纳1.从三角形的一个顶点向它的对边所在的直线作垂线,顶点与__垂足__之间的__线段__叫做三角形的高.2.在三角形中,连接一个顶点和它所对边__中点__的线段叫做三角形的中线.三角形的三条中线相交于一点,这个点叫做三角形的__重心__.3.在三角形中,一个内角的平分线和它的对边相交于一点,这个角的__顶点__与__交点__之间的线段叫做三角形的角平分线.4.三角形的三条边确定后,三角形的形状就唯一确定,这就是三角形的__稳定性__.四边形具有__不稳定性__.◆活动4例题与练习例1下列说法正确的是(B)①平分三角形内角的射线叫做三角形的角平分线;②三角形的中线、角平分线都是线段,而高是直线;③每个三角形都有三条中线、三条高和三条角平分线;④三角形的中线是经过顶点和对边中点的直线.A.③④B.③C.②③D.①④例2如图,已知△ABC,根据要求画图.(1)画BC边上的高;(2)画∠C的平分线;(3)将△ABC分成面积相等的两部分.解:如图.(1)线段AD即为所求;(2)CE即为∠ACB的平分线;(3)中线BF将△ABC分成面积相等的两部分.(答案不唯一)练习1.教材P5练习第1,2题.2.教材P7练习.3.下列说法:①自行车的三脚架;②三角形房架;③

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论