江苏省江都区曹王中学2022-2023学年数学九上期末质量检测试题含解析_第1页
江苏省江都区曹王中学2022-2023学年数学九上期末质量检测试题含解析_第2页
江苏省江都区曹王中学2022-2023学年数学九上期末质量检测试题含解析_第3页
江苏省江都区曹王中学2022-2023学年数学九上期末质量检测试题含解析_第4页
江苏省江都区曹王中学2022-2023学年数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各组图形中,是相似图形的是()A. B.C. D.2.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.3.下列条件中,能判断四边形是菱形的是()A.对角线互相垂直且相等的四边形B.对角线互相垂直的四边形C.对角线相等的平行四边形D.对角线互相平分且垂直的四边形4.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(

)A.8S B.9S C.10S D.11S5.sin45°的值是()A. B. C. D.6.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处7.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.8.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. C.3 D.59.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是(

)A.(1,0) B.(,) C.(1,) D.(-1,)10.已知(,),下列变形错误的是()A. B. C. D.11.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃12.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)二、填空题(每题4分,共24分)13.方程组的解是_____.14.长为的梯子搭在墙上与地面成角,作业时调整为角(如图所示),则梯子的顶端沿墙面升高了______.15.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.16.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.17.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.三、解答题(共78分)19.(8分)在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)21.(8分)解方程:(1)x2-8x+6=0(2)x123x1022.(10分)如图,在中,,正方形的顶点分别在边、上,在边上.(1)点到的距离为_________.(2)求的长.23.(10分)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.24.(10分)阅读下列材料,完成相应的学习任务:如图(1)在线段AB上找一点C,C把AB分为AC和BC两条线段,其中AC>BC.若AC,BC,AB满足关系AC2=BC•AB.则点C叫做线段AB的黄金分割点,这时=≈0.618,人们把叫做黄金分割数,我们可以根据图(2)所示操作方法我到线段AB的黄金分割点,操作步骤和部分证明过程如下:第一步,以AB为边作正方形ABCD.第二步,以AD为直径作⊙F.第三步,连接BF与⊙F交于点G.第四步,连接DG并延长与AB交于点E,则E就是线段AB的黄金分割点.证明:连接AG并延长,与BC交于点M.∵AD为⊙F的直径,∴∠AGD=90°,∵F为AD的中点,∴DF=FG=AF,∴∠3=∠4,∠5=∠6,∵∠2+∠5=90°,∠5+∠4=90°,∴∠2=∠4=∠3=∠1,∵∠EBG=∠GBA,∴△EBG∽△GBA,∴=,∴BG2=BE•AB…任务:(1)请根据上面操作步骤与部分证明过程,将剩余的证明过程补充完整;(提示:证明BM=BG=AE)(2)优选法是一种具有广泛应用价值的数学方法,优选法中有一种0.618法应用了黄金分割数.为优选法的普及作出重要贡献的我国数学家是(填出下列选项的字母代号)A.华罗庚B.陈景润C.苏步青25.(12分)如图是测量河宽的示意图,与相交于点,,测得,,,求得河宽.26.已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据相似图形的概念:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似,直接判断即可得出答案,【详解】解:.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状相同,但大小不同,符合相似图形的定义,此选项符合题意;故选:.【点睛】本题考查的知识点是相似图形的定义,理解掌握概念是解题的关键.2、D【解析】如图旋转,想象下,可得到D.3、D【解析】利用菱形的判定方法对各个选项一一进行判断即可.【详解】解:A、对角线互相垂直相等的四边形不一定是菱形,此选项错误;B、对角线互相垂直的四边形不一定是菱形,此选项错误;C、对角线相等的平行四边形也可能是矩形,此选项错误;D、对角线互相平分且垂直的四边形是菱形,此选项正确;故选:D.【点睛】本题考查了菱形的判定,平行四边形的性质,熟练运用这些性质是本题的关键.4、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5、B【解析】将特殊角的三角函数值代入求解.【详解】解:sin45°=.故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.7、D【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.8、B【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【详解】过点D做DF⊥BC于F,由已知,BC=5,∵四边形ABCD是菱形,∴DC=5,∵BE=3DE,∴设DE=x,则BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,设OB=a,则点D坐标为(1,a+3),点C坐标为(5,a),∵点D、C在双曲线上,∴1×(a+3)=5a,∴a=,∴点C坐标为(5,)∴k=.故选B.【点睛】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.9、C【分析】根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A(-1,0),∴OA=1,∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,).故答案为:C.【点睛】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.10、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.11、B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.12、D【解析】二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k),据此进行判断即可.【详解】∵﹣1<0,∴函数的开口向下,图象有最高点,这个函数的顶点是(﹣1,2),对称轴是x=﹣1,∴选项A、B、C错误,选项D正确,故选D.【点睛】本题考查了二次函数的性质,熟练掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据二元一次方程组的解法解出即可.【详解】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点睛】本题考查解二元一次方程组,关键在于熟练掌握解法步骤.14、2-2【详解】由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了m.故答案为.15、或【解析】根据位似变换的性质计算即可.【详解】解:∵△ABC与△A'B'C'相似比为,若点C的坐标为(4,1),∴点C′的坐标为或∴点C′的坐标为或故答案为或【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16、.【解析】试题分析:∵从1到9这九个自然数中一共有5个奇数,∴任取一个数是奇数的概率是:.故答案是.考点:概率公式.17、1【解析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则OA=AB=1,再根据三角形中位线性质得到MN=AC,然后利用AC为直径时,AC的值最大可确定MN的最大值.【详解】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×1=1,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为1,故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.18、【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.三、解答题(共78分)19、(1)∠P=36°;(2)∠P=30°.【分析】(1)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(2)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=12∠AOD=40°【详解】解:(1)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【点睛】本题考查切线的性质.20、路灯的高CD的长约为6.1m.【解析】设路灯的高CD为xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴,解得x=6.125≈6.1.∴路灯的高CD约为6.1m.21、(1)x1=,x2=-(2)x1=1,x2=1.【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-1)2=10x-1=±∴x1=,x2=-(2)x123x10x1x1-3x1x-1∴x-1=0或x-1=0解得x1=1,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.22、(1);(2)【分析】(1)根据勾股定理即可得出BC=8,再运用等面积法,即可得出答案.(2)根据正方形的性质,即可得出,再根据相似三角形的判定可得出,进而得出,设x得出方程进行求解即可.【详解】解:(1)∵∴BC=8∴==24∴∴点C到AB的距离是.(2)如图,过点作于点,交于点,∵四边形是正方形,∴,∴,∴,∴.设,则,解得∴的长为.【点睛】本题主要考察了勾股定理和相似三角形,正确找出三角形的线段关系和灵活运用等面积法是解题的关键.23、(1)见解析;(2)(-3,-2);(3)(-2,3);(4)【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据关于O点中心对称的点的坐标的特点直接写出答案即可;(3)根据平面直角坐标系写出点A1的坐标即可;(4)利用勾股定理列式求出OB,再根据弧长公式列式计算即可得解.【详解】(1)△A1OB1如图所示;(2)点A关于O点中心对称的点的坐标为(-3,-2);(3)点A1的坐标为(﹣2,3);(4)由勾股定理得,OB=,弧BB1的长为:.考点:1.作图-旋转变换;2.弧长的计算.24、(1)见解析;(2)A【分析】(1)利用相全等三角形的判定和性质、相似三角形的性质以及平行线的性质证明BM=BG=AE即可解决问题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论