潍坊市2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第1页
潍坊市2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第2页
潍坊市2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第3页
潍坊市2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第4页
潍坊市2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣12.如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程()A. B.C. D.3.如图,一次函数分别与轴、轴交于点、,若sin,则的值为()A. B. C. D.4.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.5.反比例函数(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.46.若3x=2y(xy≠0),则下列比例式成立的是()A. B. C. D.7.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小8.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A. B. C. D.9.已知二次函数,则下列说法:①其图象的开口向上;②其图象的对称轴为直线;③其图象顶点坐标为;④当时,随的增大而减小.其中说法正确的有()A.1个 B.2个 C.3个 D.4个10.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A. B. C. D.11.将二次函数化为的形式,结果为()A. B.C. D.12.一元二次方程的一次项系数和常数项依次是()A.和 B.和 C.和 D.和二、填空题(每题4分,共24分)13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=6cm,则线段BC=____cm.14.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.15.如下图,圆柱形排水管水平放置,已知截面中有水部分最深为,排水管的截面半径为,则水面宽是__________.

16.二次函数的最大值是________.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.18.已知反比例函数,在其位于第三像限内的图像上有一点M,从M点向y轴引垂线与y轴交于点N,连接M与坐标原点O,则ΔMNO面积是_____.三、解答题(共78分)19.(8分)如图,已知AB为⊙O的直径,PA与⊙O相切于A点,点C是⊙O上的一点,且PC=PA.(1)求证:PC是⊙O的切线;(2)若∠BAC=45°,AB=4,求PC的长.20.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙10101098(1)根据表格中的数据,可计算出甲的平均成绩是环(直接写出结果);(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:)21.(8分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.1.cot65°=0.446)22.(10分)李明从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问购买这张矩形铁皮共花了多少钱?23.(10分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?24.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.25.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=1.求BF的长.26.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.他们在一次实验中共掷骰子次,试验的结果如下:朝上的点数出现的次数

①填空:此次实验中“点朝上”的频率为________;②小红说:“根据实验,出现点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据根的判别式()即可求出答案.【详解】由题意可知:∴∵∴且,故选:C.【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k的取值范围.2、B【分析】设,则,根据矩形面积公式列出方程.【详解】解:设,则,由题意,得.故选.【点睛】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、D【分析】由解析式求得图象与x轴、y轴的交点坐标,再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【详解】∵,∴当x=0时,y=-k,当y=0时,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故选:D.【点睛】此题考查一次函数的性质,勾股定理,三角函数,解题中综合运用,题中求出AB,利用勾股定理求得OA的长是解题的关键.4、A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【详解】平分弧BD与弧CD相等又,即解得故选:A.【点睛】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.5、D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P在反比例函数(x<0)的图象上,∴S矩形OAPB=|-4|=4,故选:D.【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x轴,y轴作垂线与坐标轴围成的矩形面积等于|k|是关键.6、A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A.由得:3x=2y,故本选项比例式成立;B.由得:xy=6,故本选项比例式不成立;C.由得:2x=3y,故本选项比例式不成立;D.由得:2x=3y,故本选项比例式不成立.故选A.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积,熟记性质是解题的关键.7、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.8、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.9、B【分析】利用二次函数的图象和性质逐一对选项进行分析即可.【详解】①因为其图象的开口向上,故正确;②其图象的对称轴为直线,故错误;③其图象顶点坐标为,故错误;④因为抛物线开口向上,所以在对称轴右侧,即当时,随的增大而减小,故正确.所以正确的有2个故选:B.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.10、B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.11、D【分析】化,再根据完全平方公式分解因式即可.【详解】∵∴故选D.【点睛】解答本题的关键是熟练掌握完全平方公式:,注意当二次项系数为1时,常数项等于一次项系数一半的平方.12、B【解析】根据一元二次方程的一般形式进行选择.【详解】解:2x2-x=1,

移项得:2x2-x-1=0,

一次项系数是-1,常数项是-1.

故选:B.【点睛】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b分别叫二次项系数,一次项系数.二、填空题(每题4分,共24分)13、18【分析】根据已知图形构造相似三角形,进而得出,即可求得答案.【详解】如图所示:过点A作平行线的垂线,交点分别为D、E,可得:,∴,即,解得:,∴,故答案为:.【点睛】本题主要考查了相似三角形的应用,根据题意得出是解答本题的关键.14、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.【点睛】本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15、【分析】利用垂径定理构建直角三角形,然后利用勾股定理即可得解.【详解】设排水管最低点为C,连接OC交AB于D,连接OB,如图所示:

∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案为:.【点睛】此题主要考查垂径定理的实际应用,熟练掌握,即可解题.16、1【分析】题目所给形式是二次函数的顶点式,易知其顶点坐标是(5,1),也就是当x=5时,函数有最大值1.【详解】解:∵,∴此函数的顶点坐标是(5,1).即当x=5时,函数有最大值1.故答案是:1.【点睛】本题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.17、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.18、3【分析】根据反比例函数系数k的几何意义得到:△MNO的面积为|k|,即可得出答案.【详解】∵反比例函数的解析式为,∴k=6,∵点M在反比例函数图象上,MN⊥y轴于N,∴S△MNO=|k|=3,故答案为:3【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.三、解答题(共78分)19、(1)见解析;(2)2【分析】(1)根据切线的性质得到∠PAB=90°,根据等腰三角形的性质得到∠OAC=∠OCA,求得PC⊥CO,根据切线的判定定理即可得到结论;(2)连接BC,先根据△ACB是等腰直角三角形,得到AC和,从而推出△PAC是等腰直角三角形,根据等腰直角三角形的性质即可得到PC的值.【详解】(1)连接CO,∵PA是⊙O的切线,∴∠PAB=90°,∵OA=OC,∴∠OAC=∠OCA,∵PC=PA,∴∠PAC=∠PCA,∴∠PCO=∠PCA+∠ACO=∠PAC+∠OAC=∠PAB=90°,∴PC⊥CO,∵OC是半径∴PC是⊙O的切线;(2)连接BC,为⊙O直径,,,,,【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和等腰直角三角形的性质.20、(1)9;(2)7;(3),,选甲,理由见解析.【分析】(1)根据图表中的甲每次数据和平均数的计算公式列式计算即可;

(2)根据图表中的乙每次数据和平均数的计算公式列式计算即可;(3)分别从平均数和方差进行分析,即可得出答案.【详解】(1)甲的平均成绩是:;(2)设第二次的成绩为,则乙的平均成绩是:,解得:;(3),,推荐甲参加全国比赛更合适,理由如下:

两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点睛】此题主要考查了平均数的求法、方差的求法以及运用方差做决策,正确的记忆方差公式是解决问题的关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21、(1)8.5cm;(2)显示屏的顶部B′比原来升高了10.3cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转25度.【解析】(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D.∵∠AOB=115°,∴∠BOD=65°.∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.22、购买这张矩形铁皮共花了700元钱【解析】设矩形铁皮的宽为x米,则长为米,根据长方形的体积公式结合长方体运输箱的容积为15立方米,即可得出关于x的一元二次方程,解之取其正值即可得出x的值,再根据矩形的面积公式结合铁皮的单价即可求出购买这张矩形铁皮的总钱数.【详解】设矩形铁皮的宽为x米,则长为米,根据题意得:,整理,得:(不合题意,舍去),∴20x(x+2)=20×5×7=700.答:购买这张矩形铁皮共花了700元钱.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、(1)第3档次;(2)第5档次【解析】试题分析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.试题解析:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.考点:一元二次方程的应用.24、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论