2022年浙江省宁波市鄞州区实验中学数学九年级第一学期期末复习检测试题含解析_第1页
2022年浙江省宁波市鄞州区实验中学数学九年级第一学期期末复习检测试题含解析_第2页
2022年浙江省宁波市鄞州区实验中学数学九年级第一学期期末复习检测试题含解析_第3页
2022年浙江省宁波市鄞州区实验中学数学九年级第一学期期末复习检测试题含解析_第4页
2022年浙江省宁波市鄞州区实验中学数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列事件是必然事件的是()A.明天太阳从西方升起B.打开电视机,正在播放广告C.掷一枚硬币,正面朝上D.任意一个三角形,它的内角和等于180°2.把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A. B.C. D.3.在同一坐标系中,二次函数的图象与一次函数的图象可能是()A. B.C. D.4.下列各组中的四条线段成比例的是()A.4cm,2cm,1cm,3cmB.1cm,2cm,3cm,5cmC.3cm,4cm,5cm,6cmD.1cm,2cm,2cm,4cm5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为()A.(4,﹣2) B.(6,﹣2) C.(8,﹣2) D.(10,﹣2)6.抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为()A.m>1 B.m≥1 C.m<1 D.m≤17.如图,缩小后变为,其中、的对应点分别为、,点、、、均在图中格点上,若线段上有一点,则点在上对应的点的坐标为()A. B. C. D.8.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±19.下列命题错误的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等10.代数式有意义的条件是()A. B. C. D.二、填空题(每小题3分,共24分)11.正八边形的每个外角的度数和是_____.12.如图,内接于,则的半径为__________.13.如图,点P在函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.14.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.15.如图,点B是反比例函数上一点,矩形OABC的周长是20,正方形BCGH和正方形OCDF的面积之和为68,则反比例函数的解析式是_____.16.如图,边长为3的正六边形内接于,则图中阴影部分的面积和为_________(结果保留).17.如图,△ABC内接于圆,点D在弧BC上,记∠BAC-∠BCD=α,则图中等于α的角是_______18.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为____.三、解答题(共66分)19.(10分)阅读材料材料1:若一个自然数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.材料2:对于一个三位自然数,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字,,,我们对自然数规定一个运算:.例如:是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.则.请解答:(1)一个三位的“对称数”,若,请直接写出的所有值,;(2)已知两个三位“对称数”,若能被11整数,求的所有值.20.(6分)如图,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分别为D,E,F.(1)求证:CE•CA=CF•CB;(2)EF交CD于点O,求证:△COE∽△FOD;21.(6分)在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).(1)tan∠OAB=;(2)在第一象限内画出△OA'B',使△OA'B'与△OAB关于点O位似,相似比为2:1;(3)在(2)的条件下,S△OAB:S四边形AA′B′B=.22.(8分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.23.(8分)空地上有一段长为am的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为110m.(1)已知a=30,矩形菜园的一边靠墙,另三边一共用了110m木栏,且围成的矩形菜园而积为1000m1.如图1,求所利用旧墙AD的长;(1)已知0<a<60,且空地足够大,如图1.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.24.(8分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+625.(10分)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.26.(10分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、D【分析】必然事件就是一定会发生的事件,依次判断即可.【详解】A、明天太阳从西方升起,是不可能事件,故不符合题意;B、打开电视机,正在播放广告是随机事件,故不符合题意;C、掷一枚硬币,正面朝上是随机事件,故不符合题意;D、任意一个三角形,它的内角和等于180°是必然事件,故符合题意;故选:D.【点睛】本题是对必然事件的考查,熟练掌握必然事件知识是解决本题的关键.2、A【解析】试题解析:抛物线的顶点坐标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1.故选B.考点:二次函数图象与几何变换3、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可.【详解】A.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a>0,b<0,故A选项不可能.B.由一次函数图像可得:a>0,b<0;由二次函数图像可得:a>0,b>0,故B选项不可能.C.由一次函数图像可得:a<0,b>0;由二次函数图像可得:a<0,b>0,故C选项可能.D.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a<0,b<0,故D选项不可能.故选:C.【点睛】本题主要考查一次函数、二次函数图像与系数的关系,根据一次函数、二次函数图像判断系数的正负是解题关键.4、D【分析】四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例.【详解】A.从小到大排列,由于1,所以不成比例,不符合题意;B.从小到大排列,由于1,所以不成比例,不符合题意;C.从小到大排列,由于3,所以不成比例,不符合题意;D.从小到大排列,由于1,所以成比例,符合题意;故选D.【点睛】此题主要考查线段成比例的关系,解题的关键是通过计算判断是否成比例.5、A【分析】作BG⊥x轴于点G,DH⊥x轴于点H,根据位似图形的概念得到△ABC∽△EDC,根据相似是三角形的性质计算即可.【详解】作BG⊥x轴于点G,DH⊥x轴于点H,则BG∥DH,∵△ABC和△EDC是以点C为位似中心的位似图形,∴△ABC∽△EDC,∵△ABC和△EDC的周长之比为1:2,∴=,由题意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,则点D的坐标为为(4,﹣2),故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.6、C【分析】抛物线与轴有两个交点,则,从而求出的取值范围.【详解】解:∵抛物线与轴有两个交点∴∴∴故选:C【点睛】本题考查了抛物线与轴的交点问题,注:①抛物线与轴有两个交点,则;②抛物线与轴无交点,则;③抛物线与轴有一个交点,则.7、D【分析】根据A,B两点坐标以及对应点C,D点的坐标得出坐标变化规律,进而得出P′的坐标.【详解】解:∵△ABO缩小后变为△CDO,其中A、B的对应点分别为C、D,点A、B、C、D均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),C点坐标为:(2,3),D点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在CD上的对应点P′的坐标为:().故选D.【点睛】此题主要考查了点的坐标的确定,位似图形的性质,根据已知得出对应点坐标的变化是解题关键.8、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.9、A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.10、B【分析】根据二次根式和分式成立的条件得到关于x的不等式,求解即可.【详解】解:由题意得,解得.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.二、填空题(每小题3分,共24分)11、360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.12、2【分析】连接OA、OB,求出∠AOB=得到△ABC是等边三角形,即可得到半径OA=AB=2.【详解】连接OA、OB,∵,∴∠AOB=,∵OA=OB,∴△ABC是等边三角形,∴OA=AB=2,故答案为:2.【点睛】此题考查圆周角定理,同弧所对的圆周角等于圆心角的一半.13、-1【解析】由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±1,再根据反比例函数在第二象限有图象即可得出k=﹣1,此题得解.【详解】∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±1.又∵反比例函数在第二象限有图象,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.14、【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.15、y=.【详解】解:设矩形OABC的两边分别为,b则+b=10,2+b2=68∵(+b)2=2+b2+2∴2=(+b)2-(2+b2)=32∴=16∴反比例函数的解析式是【点睛】本题考查①矩形、正方形面积公式;②完全平方公式;③反比例函数面积有关的问题.此种试题,相对复杂,需要学生掌握矩形、正方形面积公式,并利用完全平方公式和反比例函数相关的问题.16、【分析】将阴影部分合并即可得到扇形的面积,利用扇形面积公式计算即可.【详解】∵ABCDEF是正六边形,∴∠AOE=120°,阴影部分的面积和=.故答案为:.【点睛】本题考查扇形面积计算,关键在于记住扇形的面积公式.17、∠DAC【分析】由于∠BAD与∠BCD是同弧所对的圆周角,故∠BAD=∠BCD,故∠BAC-∠BCD=∠BAC-∠BAD,即可得出答案.【详解】解:∵∠BAD=∠BCD,∴∠BAC-∠BCD=∠BAC-∠BAD=∠DAC,∵∠BAC-∠BCD=α∴∠DAC=α故答案为:∠DAC.【点睛】本题考查了圆周角的性质,掌握同弧所对的圆周角相等是解题的关键.18、1【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【详解】解:连接OP,

∵PA⊥PB,

∴∠APB=90°,

∵AO=BO,

∴AB=2PO,

若要使AB取得最小值,则PO需取得最小值,

连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,

过点M作MQ⊥x轴于点Q,

则OQ=6、MQ=8,

∴OM=10,

又∵MP′=4,

∴OP′=6,

∴AB=2OP′=1,

故答案为:1.【点睛】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.三、解答题(共66分)19、(1)515或565;(2)的值为4,8,96,108,144.【分析】(1)根据“对称数”的定义和可知,这个三位数首尾数字只能是5,然后中间的数字2倍后个位数为2,由此可得B的值.(2)首先表示出这两个三位数,,,根据能被11整数,分情况讨论、的值即可得出答案.【详解】解:(1)∵由运算法则可知,这个三位数首尾数字只能是5,中间数字2倍后各位数字为2,∴中间数字为1或6,则这个三位数为515或565故答案为:515或565;(2)由题意得:,,能被11整除,是11的倍数.、在1~9中取值,.当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;当,时,,;的值为4,8,96,108,144.【点睛】本题考查新型定义运算问题,理解的运算法则是解决本题的关键.20、(1)证明见解析;(2)证明见解析【分析】(1)本题首先根据垂直性质以及公共角分别求证△CED∽△CDA,△CDF∽△CBD,继而以为中间变量进行等量替换证明本题.(2)本题以第一问结论为前提证明△CEF∽△CBA,继而根据垂直性质证明∠OFD=∠ECO,最后利用“角角”判定证明相似.【详解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE•CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB•CF,则CA•CE=CB•CF;(2)∵CA•CE=CB•CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.【点睛】本题考查相似的判定与性质综合,相似判定难点首先在于确定哪两个三角形相似,其次是判定定理的选择,相似判定常用“角角”定理,另外需注意相似图形其潜在信息点是边的比例关系以及角等.21、(1)1;(2)见解析;(1)1【分析】(1)根据正切的定义求解可得;(2)利用位似图形的概念作出点A、B的对应点,再与点O首尾顺次连接即可得;(1)利用位似变换的性质求解可得.【详解】解:(1)如图,过点B作BC⊥OA于点C,则AC=1、BC=1,∴tan∠OAB==1,故答案为:1;(2)如图所示,△OA'B'即为所求.(1)∵△OA'B'与△OAB关于点O位似,相似比为2:1,∴S△OA'B'=4S△OAB,则S四边形AA′B′B=1S△OAB,即S△OAB:S四边形AA′B′B=1:1,故答案为:1.【点睛】本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质.22、(1);(2),图见解析【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】(1)共有4种可能,所以选择A通道通过的概率是.故答案为:,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.故答案为(1);(2),图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解决实际问题,正确画出树状图是本题的关键.23、(1)旧墙AD的长为10米;(1)当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为(60﹣)平方米.【分析】(1)按题意设出AD=x米,用x表示AB,再根据面积列出方程解答;(1)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论S与菜园边长之间的数量关系.【详解】解:(1)设AD=x米,则AB=,依题意得,=1000,解得x1=100,x1=10,∵a=30,且x≤a,∴x=100舍去,∴利用旧墙AD的长为10米,故答案为10米;(1)设AD=x米,矩形ABCD的面积为S平方米,①如果按图1方案围成矩形菜园,依题意得,S=,∵0<a<60,∴x<a<60时,S随x的增大而增大,当x=a时,S最大为;②如按图1方案围成矩形菜园,依题意得,S=,当a<时,即0<a<40时,则x=时,S最大为,当,即40≤a<60时,S随x的增大而减小,∴x=a时,S最大=,综合①②,当0<a<40时,,此时,按图1方案围成矩形菜园面积最大,最大面积为平方米,当40≤a<60时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<40时,围成长和宽均为米的矩形菜园面积最大,最大面积为平方米;当40≤a<60时,围成长为a米,宽为米的矩形菜园面积最大,最大面积为平方米.【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.24、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)x²+4x-5=0因式分解得,(x+5)(x-1)=0则,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移项得,x(2x+3)-2(2x+3)=0则,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.25、(1)B(﹣2,0),C(1,3);(2)见解析;(3)存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;

(2)根据勾股定理可得∠ABC=90°,进而可求△ODC∽△ABC.(3)设出p点坐标,可表示出M点坐标,利用三角形相似可求得p点的坐标.【详解】(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB=,BC=,AC=,∴AB2+BC2=AC2,,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论